M Sc Dissertation(WII)

Permanent URI for this collectionhttp://192.168.202.180:4000/handle/123456789/3

Browse

Search Results

Now showing 1 - 7 of 7
  • Item
    Assessing the distribution and density of the Fishing Cat in Bhitarkanika mangroves of eastern India by
    (Wildlife Institute of India, Dehradun, 2024) Ashik, C.S.; Mukherjee, Shomita; Gopi, G.V.; Pandav, Bivash
    Identifying the areas of occurrence, population, and the factors affecting the species distribution is critical in conservation and management. The Fishing Cat (Prionailurus viverrinus), a smaller feline native to South and Southeast Asia, is globally vulnerable and adapted to wetland habitats, with a diet primarily consisting of fish. This makes Bhitarkanika, a mangrove ecosystem, an ideal habitat for the Fishing Cat. This study was conducted to estimate the species density, determine the factors affecting its distribution, and assess the effect of lunar illumination and tidal fluctuation on Fishing Cat activity. Despite known occurrences of Fishing Cats in this area, there has been no proper assessment of their population or other ecological studies. Camera traps were deployed in 109 grids, each covering 1km², across a total of 145 km², for 2878 trap nights. Camera trap locations are unbaited, with two cameras used to capture both flanks. Spatially explicit capture-recapture (SECR) was used to estimate the density, resulting in 0.6 ± 0.1 individuals per km². The abundance was also calculated, with an estimate of 99 ± 16 individuals. These density estimates from this study are close to recent high-density estimates for the species. The canopy cover, the width of the creek, canopy cover and the distance to the aquaculture farms significantly influenced the Fishing Cat habitat use, indicating the need for the conservation of natural mangrove habitats and regulation of aquafarms present near the forest. In contrast, the presence of Saltwater Crocodile showed a negative effect on the distribution of Fishing Cats. The Fishing Cats were more active during the brighter nights of the moon phase (μ= 266.783, r= 0.051, p< 0.01) due to better visual detection. The activity was influenced both by the tidal fluctuations in terms of food resources from waterbodies and it is further enhanced by the lunar illumination during the night. Pairwise non-parametric tests showed that the probability distributions of Fishing Cat activity under lunar illumination and tide fluctuation (D= 0.125, p-value = 0.9885 and D= 0.125, p-value= 0.9899) were similar, indicating minimal differences between each probability distribution. This study underscores the importance of protecting the mangrove habitat and controlling aquaculture expansion to ensure Fishing Cat survival in the Bhitarkanika National Park.
  • Item
    Spatial Dynamics and Drivers of Nearshore Aggregations in Olive ridley Sea Turtles along the Gahirmatha Coast by
    (Wildlife Institute of India, Dehradun, 2024) Sarkar, Arnab Dey; Prabakaran, Nehru; Kumar, R.S.; Pandav, Bivash
    Olive ridley sea turtles (Lepidochelys olivacea) exhibit a well-documented phenomenon known as nearshore aggregation during their breeding season. These aggregations, comprising large numbers of turtles in shallow coastal waters, are a common feature observed along most of the mass nesting beaches. The ecological benefits of such aggregations are multifaceted, potentially including enhanced predator avoidance and increased opportunities for mate encounter. The importance of studying these nearshore aggregations stems from their vulnerability during this period. Olive ridley turtles within these aggregations are susceptible to various threats, including bycatch mortality from fishing gear. Understanding the spatial and temporal dynamics of these aggregations is crucial for developing effective conservation strategies. The Gahirmatha nesting site presents a unique case due to the influence of the Brahmani-Baitarani River system. The substantial freshwater inflow and sediment discharge from this river system have resulted in a vast area of shallow seabed compared to other nesting grounds. This distinct ecological setting necessitates a dedicated investigation into the dynamics and influencing factors of nearshore aggregations specific to Gahirmatha. The study examined the distribution and density of olive ridley sea turtles near Gahirmatha, India, a critical nesting site, with a particular focus on how environmental factors influence the location of these nearshore aggregations. Surveys were conducted throughout the breeding season, recording turtle sightings and environmental data. The findings reveal that olive ridley turtles are not distributed randomly in the nearshore waters. Instead, they form concentrated aggregations in shallow depths (less than 5 km offshore and 5-15 meters deep) before nesting. The location and density of these aggregations were not static but shifted throughout the breeding season. During the pre-nesting season, turtles were more dispersed across a wider area. As the season progressed and nesting approached, the aggregation grew denser and shifted closer to the nesting beach. The study also identified distance from the coastline and the nesting beach as the key factors influencing the distribution of these nearshore aggregations. Additionally, the unique shallow seabed near Gahirmatha, created by the discharge from the Brahmani-Baitarani River, might influence the preferred depth range of turtles compared to other nesting sites. Understanding these dynamic aggregation patterns is crucial for effective conservation efforts. Protecting these areas is essential for the well-being of this globally significant olive ridley population. However, it's important to acknowledge that the exact locations of these aggregations can vary between years. This year's lower nesting numbers suggest fewer turtles arrived in the nearshore waters, potentially impacting the size and distribution of the observed aggregations. This study emphasizes the need for long-term studies to gain a more comprehensive understanding of these variations and the factors influencing them. The study suggests a targeted approach of focusing on areas with high turtle usage. By implementing stricter patrolling measures within these zones, the forest department can significantly reduce threats like bycatch mortality from fishing activities. This targeted approach would be more effective in safeguarding the turtles compared to focusing on reducing illegal fishing in the entire sanctuary, considering the limited resources available.
  • Item
    Occupancy Pattern and Food-Niche Partitioning Among Sympatric Kingfishers in Bhitarkanika Mangroves, Orissa
    (Wildlife Institute of India, Dehradun, 2011) Borah, Joli; Pandav, Bivash; Gopi, G.V.
    Eight species of kingfishers, Common, Collared, White-throated, Pied, Stork-billed, Black-capped, Brown-winged and Rudy, - coexist in the mangrove forests of Bhitarkanika along the east coast of India. Sympatric species with similar resource requirements need to have niche partitioning as a strategy to avoid competition in order to coexist together. To understand the mechanisms underlying such species coexistence, it is vital to know about the food requirements, foraging habitat preference, and how the resources are shared between these sympatric species. The present study attempted to understand the potential mechanisms that might play a role in food-niche differentiation and examined the occupancy patterns of four sympatric kingfishers i.e. Common, Collared, Black-capped and Brown-winged kingfisher in Bhitarkanika mangroves. I conducted field study from January to May, 2011 in Bhitarkanika mangroves. The creeks were catgorized as primary, secondary and tertiary creeks based on the branching pattern. A total of 16, one km trails were selected in the intensive study area. Each 1 km trail was further divided into 10, 100 m segments for Sub-sampling. During the survey only seven among the 10 segments of each 1 km trail were surveyed which were selected randomly with replacement. A total of 160 creek segments of 100 m length were surveyed for six times during the study period and relevant habitat variables were recorded. For foraging behaviour observation, point count method was used i.e., an individual bird was followed till it captured a prey and relevant foraging variables were recorded. A total of 53 independent prey captures were recorded for the four species of kingfishers. Focal animal sampling method was used and observations were made opportunistically for time budget observation. Detection histories were constructed for each segment for bird survey and all relevant covariates. The two model parameters i.e., the probability that a segment is occupied by the species ('I') and the detection probability (P) were estimated and analysed in the occupancy framework. For foraging behaviour and time budget analysis, different parametric and nonparametric tests were used. Occupancy analysis confined that Collared and Black-capped Kingfisher occur seasonally in Bhitarkanika mangroves; Collared being more abundant in summer and Black-capped in winter. For all the four sympatric species river/creek width had a negative association with detection probability. Habitat type also affected the detection probability of all the species except Collared Kingfisher. The detection probability of Common and Black-capped Kingfisher decreased with the increase in depth whereas it did not affect the detection probability of Collared and Brown-winged Kingfishers. Water current and turbidity were negatively associated with the occupancy of Common and Brown-winged Kingfisher. However for Collared and Black-capped Kingfisher, it differed with vegetation layer. Perch height and foraging distance differed significantly among the four species of kingfishers. All the prey characteristics i.e., prey type, prey size and foraging substrate differed significantly among the four species of kingfishers. This study reveals that each of the four species of kingfishers in Bhitarkanika mangroves occupy foraging niches corresponding to their respective body sizes. The occupancy pattern and foraging behaviour of the smallest species, i.e., Common Kingfisher and the largest species, i.e., Brown-winged Kingfisher is more similar. As, both mostly forage in water to catch fish, their occupancy is also determined by water current. They segregate in terms of prey size, which is reflected by the respective body sizes. On the other hand, the foraging behaviour of Collared and Blackcapped Kingfisher is similar in terms of prey characteristics.
  • Item
    Species Assemblage and Differential Basking Habitat Use of Freshwater Turtles in a Gradient of Mahanadi Riverine Ecosystem, Orissa
    (Wildlife Institute of India, Dehradun, 2009) Jani, Chandan; Choudhury, B.C.; Sivakumar, K.
    Of the seven species of turtles recorded in the Mahanadi River, this study recorded five species of freshwater turtles between Satkosia Gorge Wildlife Sanctuary and Khakadi (Near Cuttack city) during November 2008 to April 2009. Of these five species, four were softshell turtles (Nilssonia gangeticus, Nilssonia hurum, Chura indica, Lissemys punctata) and one was hardshell (Pangshura tentoria). Relative abundance in terms of mean number of individuals sighted per kilometre was estimated. The results showed that Pangshura tentoria was most abundant and was recorded over all the sampling zones, followed by Nilssonia gangetic vs Nilssonia hurum and Chitra indica. The latter three were not distributed as commonly as the former. Lissemys punctata was not included in the report as the species never sighted during the sampling secession. However, the species was found to get captured in incidental fish catch during the study period. The low abundance of Chitra indica and Nilssonia hurum might be due to degradation of their habitats. These two species are known to refer undisturbed and wider river stretches which are diminishing in the Mahanadi River. The habitats of the river stretch between Satkosia Gorge Wildlife Sanctuary and Kakhadi varied significantly and thus, explaining the variation in the species richness as well as abundance. The major habitat variables, which have highly influenced the turtle abundance were river flow, river width and river bank characteristics. Highest abundance of species was found in the non-riparian flow zones and river stretches with rocky and sandy banks, where the habitat heterogeneity was greater. These two sampling zones also experienced the least anthropogenic pressures. Choice in habitat use for basking in turtles was also observed. The choice of the habitat varied between species. Nilssonia gangetic and Nilssonia hurum preferred areas which had greater river bank width with shallow water near the bank. Chitra indica preferred areas where both river depth and river width were higher whereas bank slope, river slope, ground cover, alternative basking substrate and immediate water depth was lower. Pangshura tentoria preferred areas with greater river and bank slope along with greater availability of alternative basking substrate and greater immediate water depth. On the other hand they also preferred the habitat more close to the river with lower bank width and moderate river depth and moderate river width. Major threats to turtles in the Mahanadi river (sampling zones) are due to anthropogenic pressure and habitat degradation. Some of the threats were found to be consistent over the sampling zones. The study shows that Pangshura tentoria was highly tolerant to all prevailing threats in the Mahanadi river but, Nilssonia hurum and Chitra indica were adversely affected by these threats all along the river. This study found that there was a negative correlation between the turtle abundance and presence of threats such as sand mining, pump house, fishing and pollution. Sand mining adversely affected the basking habitat of most of the turtle species. Pump houses were largely avoided by the turtles which may be due to the vibrations or noise created at these stations. Unintentional by-catch of turtles during fishing was also observed especially in the braided flow zones and inundated static flow zones of the Mahanadi river. Sand mining and fishing are identified as the major threats to the turtles in the Mahanadi river, which should be monitored and regulated. Sand mining should not be allowed during the breeding season of the turtles especially in the area of Non riperian flow zone and braided flow zone. These two sampling zones were identified as the Important Turtles Areas (ITAs) in the Mahanadi River. Alternate livelihood options should be identified and implemented in order to reduce people's dependency on fishing in this region. Nature education and awareness programme clearly addressing the reason for declining of turtles and their habitat in the Mahanadi river needs to be launched.
  • Item
    Nest Site Selection and Effects of Anthropogenic Changes to the Rushikulya Nesting Beah, Orissa on Olive Ridley Sea Turtes
    (Wildlife Institute of India, Dehradun, 2009) Muralidharan, M.; Sivakumar, K.; Choudhury, B.C.
    The Olive Ridley sea turtle Lepidochelys olivacea is known to nest both sporadically and in arribada's in the Indian coastline. Of the three mass nesting sites on the Orissa coast, the Rushikulya rookery has been considered as a key factor in maintaining the future populations of the Ridley's in the Indian coast. Though several studies have been carried out on various ecological aspects of the species along the Orissa coast this study looked into a finer scale of behavioural patterns exhibited by the females while selecting the nesting sites. Other aspects that are looked into in detail in this study included the various impacts of anthropogenic activities near the nesting habitat of the turtles including the impact of nest predators. The observed sporadic nesting turtles crawled an average of 47.39 m from the waterline before nesting (Range = 10.7(102m, SD = 21.0481, n = 70). Tests were conducted to check for the possibility of whether turtles were actively choosing their site of oviposition while compared to random placement over varying distances. Beach slope and soil temperature were not found to be significantly different from the nesting sites (Slope - F = 1.289, . Temperature - F = 2.241, df = 8 P>0.05) while compared to sites along the track of the nesting turtles, whereas pH and moisture were found to be significantly different from the nest-site to all sites prior to them (pH - F=37.640, Moisture - F = 44.208, df = 8 P<0.05). This shows the possibility of both pH and slope to be amongst the possible proximate cues used by a turtle in deciding a final nest. The effects of beach lighting on the disorientation of turtle hatchlings at this site has already been studied at various levels and this study re-affirms the results of the previous studies by including the effects of lighting acting upon various distances away from the water-line as well as different photic conditions present along the beach and from the adjoining villages. With areas near the villages showing maximum disorientation while compared to areas shielded from light by Casuarina plantations. Associated human activities near the Rushikulya rookery could also act in supporting and maintaining populations of certain animals (feral dogs, jackals), which have had an increased threat to turtle nests. The plantation of Casuarina adjoining the nesting beaches could also act in providing refuge to such predators apart from the known effect of changing the geomorphologic profile of the beach. These predators are known to be able to thrive even in marginalized habitats sustaining their numbers near human occupied areas. These plantations may thus also be aiding an artificial boom in their numbers thus having an increased impact of their predation on turtle nest while compared to natural levels ·of predation loss. A Passive Tracking Index (PTI) for the predator presence and activity observed a minimum presence before the mass nesting which increased immediately after the commencement of the mass nesting. Protective chain link fencing laid across sections of the beach flanked by Casurina to reduce the predator pressure in these areas may not have proven to be completely successful as high activity was still observed in the weeks following the mass nesting.
  • Item
    Diurnal and Seasonal Activity Pattern of Water Monitor (Varanus salvator) in Bhitakanika Wildlife Sanctuary, India
    (Wildlife Institute of India, Dehradun, 1993) Pandav, Bivash; Choudhury, B.C.
    This study investigated the diurnal and seasonal activity pattern of water monitor, Varanus salvator in Bhitarkanika Wildlife Sanctuary, India. The study was conducted in an intensive study area of 17 sq.km selected after a pre sampling survey in the Sanctuary. The methodology involved to record the activity pattern of water monitor was monitoring of two permanent standard paths every three hours on diurnal basis. Sightings of water monitors were recorded while walking on the standard path. Behaviour of water monitor was divided into four categories such as basking, foraging, resting and non-foraging. Microhabitat of water monitor was recorded on each sighting. Ambient and substrate temperatures and ambient relative humidity were recorded along with diurnal activity pattern of water monitors. Results show a shift in diurnal activity pattern with season. The activity pattern of water monitor was unimodal in winter and uniform in summer. Basking was the major activity of water monitor in winter, whereas all the activities were evenly spread out in summer.The lizards used different microhabitats for different activities. Maximum lizards were recorded active at cooler substrate temperatures (29°C). The relation of ambient and substrate temperatures with activity was curvilinear. At low ambient temperature basking was prevalent. With increase in temperature other activities, such as foraging and resting were recorded. At high ambient temperature lizards selected cooler substrates. Ambient temperature and ambient relative humidity varied inversely. The activity was low at high levels of humidity It is concluded that behavioural thermoregulation plays a major role in water monitor’s activity.
  • Item
    Pollinator Visitation and Reproductive Success in Two Species of Mangrove Plants, in Bhitarkanika Wildlife Sanctuary, Orissa
    (Wildlife Institute of India, Dehradun, 1997) Pandit, Shalini; Choudhury, B.C.
    Visitation patterns to the flowers of Sonneratia caseolaris and Aegiceras corniculatum were investigated between December 1996 and April 1997, in the mangrove forests of Bhitarkanika Wildlife Sanctuary, Orissa. The objectives of the study were to determine the pollination effectiveness of the different categories of visitors by quantifying their rate of visitation. The effect of environmental variables on visitation was examined, and the importance of the visitors to the reproductive success of the plant was investigated by conducting exclusion experiments (Le. bagging flowers to prevent visitation). Nectar was analysed for volume and sucrose content in S. caseolaris, and the impact of predation on the reproductive success of the plant was examined. The results of the study indicated that the flowers of both plant species attracted a wide array of visitors and did not show a specialised relationship with anyone visitor species/category. Different categories of visitors were seen to vary in their pollination effectiveness for the two plant species. Environmental variables such as temperature, sun intensity and wind velocity were seen to influence the visitation of Lepidoptera to the greatest extent, and Hymenoptera to a lesser extent. Visitation by birds was found to be independent of the environmental variables. The territorial behaviour of purple-rumped sunbirds at the S. caseolaris site was seen to reduce visitation of other birds and of bees to the flowers of this species. Results of the bagging set-ups indicated that there was no difference in the pollinator effectiveness of the nocturnal and diurnal visitors. Reproductive success was not pollinator-limited in either of the two plant species.