Technical Reports

Permanent URI for this communityhttp://192.168.202.180:4000/handle/123456789/7

Browse

Search Results

Now showing 1 - 10 of 184
  • Item
    Research strategies for conservation of Coastal and Marine Biodiversity in the East Godavari River Estuarine Ecosystem (EGREE) Andhra Pradesh, India
    (Wildlife Institute of India, Dehradun and UNDP, 2012) Sivakumar, K.; Katlam, Gitanjali; Johnson, J.A.; Thulsi, K. Rao; Krishnan, Pramod; Kathula, Tarun; Sathiyaselvan, P.; Sivanadh, Y.Satya; Usa, P.
  • Item
    Rapid survey and mapping of medicinal plants in forest divisions of Garhwal region, Uttarakhand : Executive summary
    (Wildlife Institute of India, Dehradun and Uttarakhand Forest Department, 2012) Rawat, G.S.
  • Item
    A report on population and density estimation of leopards in Girnar Wildlife Sanctuary, Gujarat
    (Wildlife Institute of India, Dehradun, 2012) Jhala, Y.V.; Basu, Arnab
  • Item
    Butterflies of Wildlife Institute of India Campus, Chandrabani, Dehradun
    (Wildlife Institute of India, Dehradun, 2012) Bhardwaj, M.; Uniyal, V.P.
  • Item
    Conservation of red junglefowl Gallus gallus in India : final report
    (Wildlife Institute of India, Dehradun, 2012) Sathyakumar, S.; Fernandes, Merwyn; Mukesh; Kaul, R.; Kalsi, R.S.
    The Red Junglefowl (RJF) is believed to be the wild ancestor of all domestic chicken in the world. there still exist a strong ethno-cultural bond where the wild males are used to invigorate the domestic stock in order to enhance the first generation individuals that are used in the context of cultural and religious relevance. Concerns were raised on the genetic endangerment of RJF due to introgression of domestic genes into the wild population. There needs to address these concerns and maintain uncontaminated RJF population in wild and captivity. keeping this in view, the Wildlife Institute of India, carried out a research project from 2006 to 2011 in two phases that dealt with status, distribution, genetic diversity, interactions between wild RJF and domestic chicken and introgression of domestic genes into the wild and captive stocks. The RJF listed in the “Least Concern” category of IUCN with an extent of occurrence of about 5,100,000 km2. One of the subspecies G g murghi has its distribution within India. In order to address the issues of status and distribution we resorted to using presence-only models. These models overcome the cost and time constraints when dealing with a large ranging species. Species site locations were all collated by using primary field data, network of field biologist, literature records, museum specimens and archived databases. A total of 500 georectified data points were used along with predictable variables such as bioclimatic factors, digital elevation model and forest cover. These variables were used to run maximum entropy models using the product function, the test data has an AUC score of 0.979, the jackknife test for variable importance was annual precipitation and precipitation of the driest quarter that contributed 46% to the model. The total predicted probability suitable area in India is approx 354,978 km2. There are three distinct landscapes within India namely north (12%), central (52%) and northeastern (36%).The central landscape is isolated and does not connect either to the north or northeastern landscape. The north and northeastern landscape is connected to each other through the forest patches in Bhutan and Nepal. PA network accounts for nearly 13% of the area with the National Parks (34) representing 4.32% and the Wildlife Sanctuaries (135) representing 8.52%, while nearly 90% of the area lies outside the purview of the PA network system. The species is still reported from 205 districts out of the 270 districts in range 21 states. Genetic diversity, population differentiation and phylogenetic analysis of RJF populations were assessed in 19 RJF range states of India. In total, 385 samples (306 RJF & 79 domestic chickens) were collected and genotyped with 26 microsatellite markers. Altogether, 628 alleles were observed across five RJF and one domestic chicken population. Observed and effective number of alleles ranged from 9 to 49 and 2.96 to 12.40 with mean (± s.e.) number of alleles 24.15 (± 8.31) and 6.50 (± 2.71), respectively. Effective number of alleles was less than the observed number of alleles for all the loci. The overall observed heterozygosity ranged from 0.23 and 0.79, with mean value of 0.52 ± 0.13, while expected heterozygosity ranged 0.62 to 0.92 with mean value of 0.82 ± 0.08. PIC value ranged from 0.56 to 0.91 with mean value 0.80 (±0.09) and therefore all microsatellite markers were informative in the present study. Mean observed number of alleles & mean observed heterozygosity was highest in Northern RJF population, i.e. Na 21.12 ±7.14 & Ho 0.61 ±0.17 and lowest in central RJF population, i.e. Na 1.92 ±0.89 & Ho 0.35 ±0.42, respectively. Total number of private alleles ranged from 1 to 179 in South-Eastern and Northern RJF population, respectively while no private was found in Central RJF population. The analysis of molecular variance (AMOVA) revealed a total of 6% variation was attributed to among populations while 94% variance was within population. The minimum population differentiation or maximum gene flow was between Northern and Eastern RJF population (Nm 10.846) while maximum population differentiation or minimum gene flow was between Central and Eastern RJF population (Nm 0.911). The overall, Nm values were quite high, suggesting the high gene flow among RJF populations. Nei's genetic distance indicated that the Central Indian RJF population is least similar or most distant (DA= 0.942) with domestic chicken, while the northeastern RJF population is most identical or least genetically distant (DA = 0.255) with domestic chicken. The UPGMA dendrogram was generated based on Nei’s genetic distance. The RJF populations in India formed three clusters: (i) central and southeastern, (ii) northern and eastern, and (iii) northeastern and domestic chicken. The multi-factorial correspondence analysis also revealed the similar pattern of clustering the RJF populations. In order to study interactions, observation were recorded from 13 sites with mixed groups all observations were in the pre-dawn hours. A total of 51 encounters were recorded. The interest was to elucidate whether an interaction between the wild and domestics fowls was mutualistic or agnostic during the breeding and nonbreeding season. From the 10 observation recorded during the breeding season there were no interaction between the wild and feral population suggesting that there might be a spatial segregation between these two populations. While interactions during the nonbreeding season suggest that that males are intolerable to each other when in close proximity, while the females are tolerated and move about freely within the groups. Genetic characterisation and maintaining studbooks is the key step towards formulating management action plan for conservation breeding or release program for any captive species. We collected 220 RJF samples (blood/feathers) from 14 captive centers and investigated population genetic structure and admixture analysis of RJF with domestic chicken using 23 highly polymorphic microsatellite markers. Bayesian clustering analysis revealed three distinct groups that indicated the genetic integrity among the birds of 14 centers. We presumed genetic integrity would have been resulted due to exchange of birds between zoos or the founders would have been introduced from the same wild population. The global performance of STRUCTURE assigning individuals was 169/220=76.81% while 8.63% individuals remained unassigned to any of three clusters. Each RJF stock was independently investigated for admixture analysis with a pooled domestic chicken population and ten birds were found to be hybrids out of 220 birds collected from 14 captive centers. based on the study, we recommend the following As this study could not survey all areas within RJF’s distribution range, we suggest that there is a need to increase efforts to understand whether the species is prevalent within forested tracts outside the PA network, especially Bihar, Haryana, Punjab, Sikkim and Uttar Pradesh where the present distribution is highly fragmented with growing pressures on the existing PA of these States. Similarly, in the States of Andhra Pradesh, Jammu & Kashmir and Maharashtra, extensive field surveys should be carried out to ascertain the presence/absence and exact distribution limits of RJF as these States encompass the limits or edges of the distribution range of this species. Special focus surveys/studies are required at range overlaps between G.g. murghi and G.g. spadiceus (northeastern States) and also between RJF and Grey Junglefowl (central India). Based on our samples collected from zoos/captive centres (Table 5.1), admixed bird were identified (Table 5.4). These admixed individuals (hybrids between RJF and domestic chicken) that are kept in zoos/captive centres should be removed from these captive stocks to avoid any further hybridisation. They should not be exchanged with any other zoos/captive centres and should not be released back into the wild. The list of individual birds in the zoos/captive centres that have been identified as ‘not admixed’ have been provided to these centres. For RJF individuals in zoos/captive centres that were not sampled during the study or born or added after the sampling, similar genetic analysis should be carried out. Such individuals should not be used /exchanged for any breeding programme. As there are chances of silent breeding between RJF and domestic chicken, hence the use of domestic hens as foster parents should be avoided.
  • Item
    National Biodiversity Information outlook (NBIO)
    (Wildlife Institute of India, Dehradun, 2012) Chavan, Vishwas; Gaikwad, Jitendra; Mathur, V.B.
  • Item
    Assessment of the landscape between the Gir Protected Area and the Girnar Wildlife Sanctuary, Gujarat for a potential lion habitat corridor
    (Wildlife Institute of India, Dehradun, 2012) Jhala, Y.V.; Qureshi, Q.; Basu, P.; Banerjee, Kaushik
    In this report, assess the habitat characteristics, extent of fragmentation and its future trends, prey abundance and perception of the local communities towards lion conservation in the agro-pastoral landscape between the Gir PA and the Girnar forests to help in delineating the important dispersal corridor habitat between the Gir PA and the Girnar Wildlife Sanctuary, suggesting measures for its effective conservation
  • Item
    Development and maintenance of studbooks of selected endangered faunal types in the Indian Zoos. Final report
    (Wildlife Institute of India, Dehradun and Central Zoo Authority, 2012) Nigam, Parag; Srivastav, A.; Tyagi, P.C.
  • Item
    Assessment of cumulative impacts of hydroelectric projects on Aquatic and terrestrial biodiversity in Alaknanda and Bhagirathi basins, Uttarakhand
    (Wildlife Institute of India, Dehradun, 2012) Rajvanshi, Asha; Arora, Roshni; Mathur, V.B.; Sivakumar, K.; Sathyakumar, G.S.; Rawat, G.S.; Johnson, J.A.; Ramesh, K.; Dimri, Nandkishor; Maletha, Ajay