Technical Reports
Permanent URI for this communityhttp://192.168.202.180:4000/handle/123456789/7
Browse
Item Camera trapping protocol Phase III(Wildlife Institute of India, Dehradun, 2018) NTCA-WIIThis manual highlight some important guidelines for design and deployment of camera traps, archiving images and collating data in an easily analyzable format by GIS analysts, park managers and research biologists.Item Current population status, distribution and threats to Indian Pangolin (Manis crissicaudata) in Terai Arc Landscape, Uttarakhand: a pilot study(Wildlife Institute of India, Dehradun, 2020) Lyngdoh, S.; Goyal, S.P.; Nigam, P.; Kumar, V.; Badola, S.; Rasailly, S.This pilot study to provide information on the current distribution of Indian pangolin and major poaching hotspots throughout its ranges to suggest appropriate conservation strategies and protection measures for the species. The proposed objectives for this pilot study are the following: a. To review the current status, distribution and threats to the Indian pangolin population in the study area. b. To prepare a standard protocol for the survey and population estimation of Indian pangolin. c. To formulate effective anti-poaching strategies and devise conservation measures for Indian pangolin to help Uttarakhand Forest Department.Item Identifying delineating and mapping areas with high conservation values and developing management recommendatons/plans for SECURE Himalaya landscapes in Himachal Pradesh(Wildlife Institute of India, Dehradun, 2021) Lyngdoh, Salvador; Sathyakumar, S.; Bhatnagar, Y.V.; Singh, N.; Yadav, S.N.High Conservation Value Areas (HCVAs) is an emerging concept used to identify important areas based on a variety of parameters including biodiversity, landscape context, threatened or endangered ecosystems, provisioning of basic ecosystem services, and dependence of local communities. The assignment aims to Identify High Conservation Value (HCV) categories of areas in the project landscape of Himachal Pradesh, delineate their boundaries and map them, and suggest relevant recommendations with respect to the potential threats prevalent in the areas, specific for each HCV category. The Ministry of Environment, Forest and Climate Change (MoEFCC), Government of India along with UNDP has implemented a GEF funded project: SECURE Himalaya (Securing livelihoods, conservation, sustainable use and restoration of high range Himalayan ecosystems). The project aims to promote sustainable land management in alpine pastures and forests in Indian Himalayan ecosystems for conservation of snow leopard and other endangered species and their habitats and sustaining ecosystem services. The project SECURE Himalayas would be implemented over a period of six years in the high-altitude trans-Himalayan region, which covers an area of about 184,823 km2 representing 5.62 percent of the total geographic area of the country. The selected landscape for the project is Lahaul-Pangi & Kinnaur Landscape in Himachal Pradesh. The Himalayan ecosystem in India is of critical importance for its immense biological, sociocultural, and hydrological values. The biodiversity and ecosystems that it harbours form an important life-support system for a large number of agro-pastoral communities that depend on it. However, these natural ecosystems are under severe threat from high dependence of local communities on natural resources. The major threats as identified in the landscape are intensive grazing of the pasturelands by domestic livestock, inter-specific competition between wild ungulates and domestic livestock, human-wildlife conflict resulting in crop destruction and depredation of livestock, over-harvesting and illegal extraction of medicinal and aromatic plants by intruders, over-exploitation of natural resources and uncontrolled conventional tourism interfering with the fragile ecosystems and the wildlife of the area. The current assignment identifies and delineate the potential high conservation value areas in the landscape through a knowledge-based approach i.e. data compilation, remote sensing & GIS approach, and ground truthing. The information is presented through the appreciation and understanding of the study sites by short-listing of areas of high conservation value and their management regimes. We reviewed 101 documents (74 peer reviewed and 27 unpublished) pertaining to the subject, and concept of high conservation value forests. Remote sensing and GIS data was used to generate various layers like digital elevation model (DEM), land-use land cover (LULC), drainage network, road network, protected areas network, distribution, occupancy maps of species, forest cover, slope and maps of villages in the landscape in concern. With the help of the secondary data and various GIS layers, potential high conservation value areas were identified and mapped in the remote sensing and GIS environment. Through ‘ground truthing’ of the available data and stakeholder consultations followed by field visits to the potential areas, 28 villages were visited, 13 in Lahaul and 15 in Pangi valley. Village level meetings were organized and data were collected using semi-structured open-ended questionnaire, for validation of potential high conservation value areas (HCVAs). Key informants were identified and interviewed for further validation and verification for HCVAs. A presence survey was conducted in the landscape to understand mammalian species distribution by using a combination of direct and indirect methods. Direct methods were based on visualencounters of animals whereas indirect methods relied on quantification of indirect evidences such as animal feces (pellet groups, scats, droppings), tracks (pug marks, hoof marks, scrapes) and other signs (feeding/ digging). Since all the areas surveyed were located at higher altitudes on steep and uneven terrain, the trails in the forests and alpine regions were surveyed. A total of 79 trails (1 km each), were surveyed, 25 in Lahaul, and 54 in Pangi. A total of 17 areas with high potential for conservation were identified in the entire landscape, 11 in Lahaul valley, namely, Miar valley, Naingar & Neelkanth lake, Billing-Istingri, Darcha-Jispa, Koksar, Kuruched, Hadsar, Chandratal lake, Mrikula Mata temple, Trilokinath temple, Kardang monastery; and 6 areas in Pangi, Sural Bhatori & Sural Gompa, Hudan bhatori, Kadu nallah, Sechu Tuan, Luj and Mindhal. Consequent upon these consultations and ground verification, biodiversity values and associated threats to these biodiversity values have been identified for each of the short-listed area of high conservation value and relevant recommendations prepared. It is proposed that in order to conserve the integrity of each HCVA type the status of the land in concern needs to be ascertained. The key recommendations towards this end include- 1) Demarcation of critical areas within the short-listed areas of high conservation values to serve as important livelihood source for herder communities; 2) Integrated pastureland management regimes to reduce the pressure on the pastures, and provide some time for restoration; 3) Anti-predatory livestock management through fences and other barriers, human-accompanied herding of livestock to reduce livestock losses is recommended; also, the strategies suggested by the SECURE-HWC (human-wildlife conflict) project in Lahaul-Pangi landscape, shall be followed. 4) Enhanced training to the key stakeholders concerning the extraction, harvesting and sustainable use of medicinal and aromatic plants; 5) Enhanced collaboration between the enforcement agencies (like the forest department and security forces) for improved surveillance to identify, monitor and prevent illegal activities. 6) Policy harmonization for potential HCVAs in the form of recognizing such areas as Community Conservation Reserve, Biodiversity Heritage Sites or Medicinal Plant Conservation and Development Areas.Item Ecology of clouded leopard (Neofelis nebulosa) in an East Himalayan Biodiversity Hotspot - Carnivore Co-existence in Manas National Park, Assam, India(Wildlife Institute of India, Dehradun, 2021) Lyngdoh, Salvador; Habib, Bilal; Bhatt, UrjitSympatric species occupying similar niche can result in competitive exclusion of subordinate species. However, species are able to avoid interspecific competition through morphological, physiological, or behavioural trade-offs, which in turn leads to differences in resource use. A guild of wild species of Felidae comprising various combinations of up to eight species is distributed across South-east Asia, with species ranging in size from the tiger (Panthera tigris) to the flat-headed cat (Prionailurus planiceps). Little is known of the ecology of most of these species, and less of their guilds. Large felids such as tigers and leopards coexist in most of their ranges. The sympatric association of such large cats has been studied and debated in most tropical forests of India. The clouded leopard (Neofelis nebulosa), a potent ambassador species for conservation, is among the least known. The clouded leopard is the smallest of the large felids and is least studied due to its secretive nature and nocturnal behaviour. The species is an umbrella species for the Asian forest ecosystem and can be found along the foothills of the Himalayas through Nepal, Bhutan, and India to South China down to Peninsular Malaysia, and on the islands of Sumatra and Borneo. The clouded leopard is vulnerable on the IUCN Red List of Threatened Species and faces a global decline in population and contraction in its geographic range. The species occupies areas undergoing some of the most rapid deforestations and is threatened by poaching and wildlife trafficking. Clouded leopards are apex predators in many Southeast Asian rainforests, although they cooccur with larger predators such as tigers, leopards, dholes; their density, activity, and habitat use may vary. Although there have been discoveries regarding the felid guilds and habitat use of the Sunda clouded leopard, and the threat to the species from habitat loss, little is known for the mainland clouded leopard and the felids with which it is sympatric. Despite the fact that tropical rainforests are known for its high biodiversity and species richness, the scarcity and/or the cryptic behaviour of some of the species have resulted in the scarcity of information about these species. The tendency of many rainforest species to avoid humans on existing tracks (where most transect surveys are done) is well known. These conventional methods include surveys on the footprints, dung, calls, live-trapping, den counts and direct observation. All these surveys are usually performed along transects, and in the past, they were the preferred method in various countries. However, walking along transects to observe terrestrial mammals in tropical rainforests can be extremely challenging. The observers' different abilities to detect and recognize the species may lead to a bias during data collection, increasing the likelihood of animals fleeing unobserved. Presence-absence survey using transects lines or logging tracks may not yield substantial evidence of species diversity. Thus, if any survey were to be conducted without considering these factors, most wildlife surveys could expect a biased trend. In a dense tropical rainforest, camera-traps are useful to detect cryptic species, estimating species diversity, movement, interactions, habitat associations, abundances using individual recognition and, recently, without individual recognition in various countries. A good image from the camera trap is indisputable regarding a certain species' presence compared to an interview or conventional survey methods. The utilization of camera-traps has revealed the presence of secretive rainforest dwelling species, which have been overlooked by applying the traditional transect surveys. In India, this method has been used in estimating densities and abundances of various carnivore species in several protected areas, but few attempts have so far been made in the dense forests of tropical evergreen habitats of the north-eastern part. The use of camera trapping rate as an index of abundance is both promising and cost-effective for the rapid assessment of animal abundance in remote areas or where alternative methods are unfeasible.The study was conducted in tropical semi-evergreen forests of Manas National Park (MNP), Assam, India. The objectives of the study were to (1) estimate the status of clouded leopard and other carnivores, (2) assess prey status and feeding ecology of clouded leopard, and (3) determine the factors governing coexistence of carnivores.Item Assessment of medicinal and aromatic plant species on their collection, usage, demand, markets, price trends and life cycle in Lahaul and Pangi landscape, Himachal Pradesh(Wildlife Institute of India, Dehradun, 2021) Kumar, Amit; Sathyakumar, S.; Goraya, G.S.; Gupta, A.K.; Adhikari, B.S.; Rawat, G.S.Nested in the Western Himalaya, the state of Himachal Pradesh (30° to 33°N and 75° to 79° E) is known for its rich biological diversity. It covers an area of 55,673 km2 with >3,300 distinct plants species. Interestingly, the alpine areas of Lahaul and Spiti are one of the major hot spots of wild MAPs in the Western Himalaya. Unfortunately, the remote valleys such as Lahaul, Pangi, Spiti, Kinnaur including micro-watersheds lying in the cold-arid regions of Himachal Pradesh are relatively less studied in terms of available growing stock and population status of MAPs. Notably, there is a general lack of literature on medicinal plants at the catchment, watershed and valley levels. Further, the information on recent levels of trade of MAPs are available only from a few localities of the Western Himalaya. Like other areas, these areas have also been facing additional stress due to over-exploitation of forest resources, including the unscientific and premature harvesting of MAPs from the wild, which functions parallel to the illegal and hidden markets thus, putting tremendous pressure on the wild resource base resulting in the dwindling populations and precarious livelihoods of local communities. The rising demand of herbal products has caused excessive harvesting of many of the important MAPs from these regions, putting their wild population at the risk of extinction. Keeping aforementioned aspects in view, the current study was proposed which aims to study selected Medicinal and Aromatic Plant (MAP) species in Lahaul and Pangi landscape of Himachal Pradesh with focus to ensure sustainable harvesting and cultivation by (i) identifying usage patterns of MAPs, and (ii) studying existing value chains. In order to address the project objectives, the present study has been categorized into 12 key tasks. The current study revealed that the major issues adversely impacting the MAP species in the Lahaul and Pangi landscape include illegal/ over/ premature/ unorganized harvesting of Medicinal and Aromatic Plants (MAPs), high demand and non-transparent operations in the markets of MAPs. Besides these issues, few gaps such as knowledge on available stock of MAPs, lack of information on cultivation and harvesting methods of key MAP species specific to Lahaul and Pangi landscape, lack of information on end users and middlemen and inadequate information on quantity of raw material traded have been reported. In order to optimize the benefits to the local communities and adopt the concepts of sustainable harvesting and benefit sharing, it is important to assess the availability, market trends and methods for collection of MAPs including gathering information on population of selected MAPs. This will help in identifying High Conservation Value Areas (HCVAs) and delineating MPCAs for in-situ conservation in the landscape. Assessment of medicinal and aromatic plant species on their collection, usage, demand, markets, price trends and life cycle in Lahaul and Pangi landscape, Himachal Pradesh Additionally, identification of large traders and industries that acquire their raw materials from Lahaul and Pangi will strengthen the implementation of Access and Benefit Sharing model on pilot basis. Furthermore, identification of hidden markets viz., local, regional and national, price trends, value addition and strengthening BMCs will help in sustainable management of MAPs in the landscape. The first step towards conservation is identifying the existing population base, and information on the species distribution and abundance. Identification of the best cultivation practices, R&D to reduce long-gestation periods, cost effective technology, organic-farming, buy-back mechanisms, policy-revision in the interest of stakeholders, protocols for post-cultivation management, quality-control and awareness training are some measures in this direction. It can be concluded that in order to optimize the benefits to the local communities, and to adopt the concepts of sustainable harvesting and benefit-sharing, it is important to assess the availability, market trends and methods for collection of MAPs, including gathering information on population of selected MAPs. A major step towards species conservation can be spreading awareness on the dwindling populations amongst the stakeholders. It is also important to identify alternative sources of income for the locals to create in them confidence that wild harvest of MAPs was not the only source of cash income and, thus to dissuade them from ruthless wild harvest and to make them participate in conservation programs. Identifying and building the capacities of stakeholders including the forest officials, locals, school children, traditional healers and plant traders can help in community based natural resource management. These issues need to be addressed to ensure long-term conservation of the MAP resources of the landscape in a way that livelihood needs of the local communities depending on this resource are not compromised. The following key recommendations have emerged after this study: Documentation of the Conservation Status of Key MAPs i Setting aside Conservation Areas around Viable Populations of Priority MAPs ii Strengthening of Biodiversity Management Committees (BMCs) iii Value addition by adopting best Post-Harvest Management Techniques iv Developing Farm-scale Agro-Techniques for Priority MAP Species v Developing Germplasm Banks of the Priority MAP Species vi Study and Monitor Impacts of Climate ChangeItem Review of site-specific wildlife management plan(January 2021) of North Koel Reservoir Project (Mandal Dam)(Wildlife Institute of India, Dehradun, 2021) Jha, R.R.S.; Gopi, G.V.This review consists of three parts. In the first part, largely through secondary sources, we provide a background of the North Koel Reservoir Project and information on Palamau Tiger Reserve (PTR) where the project is situated. We mention how the task of reviewing the Site-specific Wildlife Management Plan (January 2021) in lieu of diversion of 1007.29 hectares area (ha) of forest land for the project came to the Wildlife Institute of India (WII). We also describe our review objectives, methodology and approach towards the task, as well as limitations, as communicated to the Department of Forest, Environment & Climate Change, Government of Jharkhand. In the second part, we first provide general comments and observations on the plan and thereafter chapter-wise analyse and evaluate the same, with respect to our objectives and based on relevant guidelines framed and circulated by the office of the Principal Chief Conservator of Forests (Wildlife) and Chief Wildlife Warden (CWLW), Government of Jharkhand in this regard in 2015. We provide detailed observations and suggestions towards strengthening each chapter. We then mention details of our field visit including our learnings and insights gained from interactions with different stakeholders. In the third and concluding part, we provide recommendations towards improving the plan to benefit inhabiting wildlife and ecosystems in and around the project site and in its impact zone, as well as PTR as a whole. The second and third parts, thus, contain primary inputs in the form of actionable comments and suggestions from WII. We recommend a multi-seasonal year-long biodiversity assessment in the project impact zone. We also suggest exercising caution and applying scientific rationale in the use of barriers to reduce negative human-wildlife interactions and/ or to limit illegal activities. We also recommend setting aside budget towards empowering ecodevelopment committees in various management and conservation activities; upgrading facilities, providing training, equipment and field gear, and welfare for frontline staff (both temporary and permanent); and a comprehensive research program for PTR. We recommend drawing up detailed plans for ecotourism in PTR, providing alternative livelihood opportunities for the local indigenous population, habitat creation and habitat management towards wild herbivores’ population augmentation etc to enable further scrutiny of such plans, among other suggested interventions. Relevant appendices are provided towards the endItem Assessment of amphibians and reptilian diversity along Ganga river : progress report(Wildlife Institute of India, Dehradun, 2021) Das, Abhijit; Hussain, S.A.; Johnson, J.A.; Boruah, BitupanIn the present study an attempt has been made to survey the herpetofaunal diversity along Ganga River. The objectives of the study are to determine the species richness and diversity of herpetofauna along Ganga and Alaknanda river ii. To map the distribution of herpetofaunal species along Ganga and Alaknanda river iii. To study the reproductive biology of threatened amphibian species of the Ganga River BasinItem Assessment of capacity and training needs of key government staff and community members/institutions for a long term effective biodiversity conservation and development of a framework for implementaton in SECURE Himalaya project landscape in selected districts of Himachal Pradesh(Wildlife Institute of India, Dehradun, 2021) Lyngdoh, Salvador; Sathyakumar, S.; Bhatnagar, Y.V.; Pandev, B.The SECURE Himalaya project pertaining to the high-altitude Trans-Himalayan region for the improved demand management of high range Himalayan landscapes for the conservation of Snow Leopard, other endangered species, their habitats, and sustaining ecosystem services in a novel initiative aimed at achieving conservation goals through a holistic approach. A major component of the project, titled “Assessment of capacity and training needs of key government staff and community members/institutions for long-term effective biodiversityconser vation, and development of a framework for implementation in SECURE Himalaya Project landscapes (Lahaul, Pangi and Kinnaur) of Himachal Pradesh” was undertaken by the Wildlife Institute of India (WII, Dehradun). This component aims to assess the capacities and training needs of key stakeholders and develop a framework and specific training modules for the targeted stakeholders' capacity development. This report conceptualizes the approach of capacity development through training need assessment of identified stakeholders. It outlines the methods adopted based on consultations with various stakeholders, experts, managers and policy makers. Major gaps documented in the landscape with respect to various stakeholders were identified. Modules and capacity development schedules have been suggested to meet the needs for awareness on biodiversity conservation, enhanced training on wildlife monitoring techniques, interventions for reducing human wildlife conflict and strengthening enforcement. We mapped and categorized each stakeholders and their roles in the landscape. A training Need Assessment (TNA) of the target stakeholder through local meetings, workshops and focal as well as instead with the stakeholders documented opportunities for national and state training and research institutions to contribute to the capacity development of the landscape. We prepared detailed and specific training modules for multi-stakeholders through the TNA exercise. Training have been designed to meet the needs concerning their role in long-term biodiversity awareness, conservation, monitoring and enforcement. Hitherto, training modules were categorized into three themes: Biodiversity conservation, Biodiversity monitoring and Sustainable management and livelihood. Pilot training of trainer’s workshop on one of the modules, “Human-wildlife conflict mitigation,” for relevant stakeholders from the forest and different line departments was undertaken to further refine a capacity development framework, timeline and module development. The capacity development framework suggested in this report has been aligned with the indicators and outcomes of the SECURE Himalaya objectives. It is hoped that the exercise undertaken in this assignment will yield significant results with respect to enhancing the capacities of various stakeholders.Item Status of low and high altitude grazingland and issues of livestock (Migratory pastoralism) in Kailash Sacred Landscape-India, Wildlife Institute of India, Dehradun(Wildlife Institute of India, Dehradun, 2021) Adhikari, B.S.; Rawat, G.S.; Garbyal, U.; Srikar, R.Pastoralism is of three different kinds; Sedentary pastoralism, Mobile pastoralism, and Silvopastoralism. Grazing of livestock in limited grazing zones or ranches due to strict political borders leads to sedentary pastoralism. This form of pastoralism is becoming more common with the changing geo-political dynamics across the world. Sedentary pastoralists also raise crops with livestock in the form of mixed farming to diversify productivity. Mobile pastoralism includes moving herds of livestock in search of fresh forage and water, from shorter to longer distances. Transhumance is the form of mobile pastoralism where animals are routinely moved between different seasonal pastures across regions and under nomadism pastoralists their families move with the animals in search of available grazing grounds to supplement their natural resource needs. Grazing in woodlands and forests may be referred to as silvopastoral in which the livestock is periodically grazed inside the forest areasItem Status of Ganges River Dolphins, threats and best practices for conservation(Wildlife Institute of India, Dehradun, 2021) Qureshi, Qamar and othersThe South Asian river dolphin is a widely distributed apex predator in Ganga and Brahmaputra river systems. The Gangetic Dolphin ranges into most of the large tributaries in the Ganga Basin: the Chambal, Ramganga, Yamuna, Gomti, Ghaghara, Rapti, Son, Gandak and Kosi, besides the main channel of the Ganga. In the Brahmaputra valley, it ranges into the major tributaries such as the Tista, Adadhar, Champamat, Manas, Bhareli, Subhansiri, Dihang, Dibang, Lohit, Disang, Dikho and Kulsi rivers. From status surveys, and mortality data, the most devastating threats is dolphin poaching for oil, used for bait fishing and traditional medicine and dolphin entanglement in gill nets, especially mono-filament gill netsItem Long term conservation plan for hangul Part II Hangul movement pattern study using GPS satellite telemetry - final report(2016-20)(Wildlife Institute of India, Dehradun, 2021) Ahmad K.The globally viable single population of Kashmir Red Deer or Hangul (Cervus hanglu hanglu), one of the critically endangered subspecies of the Central Asian Deer is restricted to a confined area of 141 km2 Dachigam National Park (34°05ʹ to 34°32ʹN; 74°50ʹ to 75°16ʹE) in the Greater Himalayan mountain range of the Northwest Himalayan biogeographic region zone 2A, with some stray populations occurring in the adjoining relic range areas (Ahmad et al. 2009; Qureshi et al. 2009). Earlier, the species was widely distributed in the mountain of Kashmir Himalayas along the entire Greater Himalayan mountain range (Gee 1965; Schaller 1969; Prater, 1993; Nowak, 1999) declined drastically in the recent past from 5000 Individuals prior to 1947 to less than 200 Individuals at present. Current trends in the Hangul population indicate that the species could go extinct if necessary serious interventions are not made immediately and as such there was need to undertake urgent measures to hold the declining trends in the Hangul population (Ahmad et.al. 2009: Qureshi et.al. 2009; Ahmad et.al 2013). Therefore, understanding the ecology and biology particularly the movement ecology of this critically endangered deer species with small single population was fundamental to develop better strategies for conservation and management practices. The present study duly funded by the MOEF & CC, Government of India was as such initiated to understand the lesser known aspects of movement ecology and behaviour of this last viable population of the Hangul for its effective management, conservation planning and species population recovery under the following objectives: 1) Studying the seasonal Home range size and ranging and movement patterns of Hangul in and outside Dachigam National Park vis-à-vis Hangul migration route, important stop-over sites, and barriers and corridors to migration into the Hangul’s relic areas.2) Studying the lesser known aspects of Hangul ecology viz., habitat use, activity patterns, behaviour and predation prerequisite for effective long term management and conservation of Hangul and its habitats. 3) To identify the potential habitats used by Hangul outside Dachigam and assess and evaluate the extent and magnitude of habitat conditions and threats therein. 4) To identify threats, anthropogenic pressures and other factors particularly predation pressure by leopard and meso-carnivores that impact Hangul distribution and movement patterns. The capture and Satellite collaring of five Hangul (2 males, 3 female) successfully conducted for the first time under this project has been a milestone achievement in the field of satellite telemetry. The findings of this research study indicated that the Home range size varied from 4.98 Km2 in spring to 7.83 Km2 in summer. One of the female collared Hangul showed movement patterns outside Dachigam National Park towards Sindh forest division crossing the river Sindh and covering an area of 137.94 km, with area use of 10.86-12.26 Km2 in summer 2019 to 137.94 km in summer 2020 and a maximum home range of 124.4 km2 in Summer 2020 to colonize and establish its new summer habitat in the erstwhile range area of Wangath-Naranag Conservation Reserve (CR). The data and information generated has enabled us to identify the corridor areas of movement of the Hangul from Dachigam National Park and outside in the 3 Long Term Conservation Plan for Hangul Part II: Hangul Movement Pattern Study Using GPS-Satellite Telemetry adjoining erstwhile range areas in north and south and habitats assessment therein. The data generated also indicated that Hangul shows two activity peaks in morning and evening hours with significant seasonal variations. The findings of the study are of great ecological significance as the significant information generated through this research on the lesser known aspects of movement ecology including animal home ranges and habitat use, biology and behaviour of the Hangul deer would go long way in supporting the management interventions for population recovery and long term survival of this endemic deer of India in Dachigam National Park and its erstwhile range areas in Kashmir Himalayas. Major management and conservation Intervention recommendations 1. The study revealed that major and viable population of Hangul are confined to Dachigam National Park. Despite availability of ideal summer habitats for the Hangul in upper Dachigam, these alpine meadow habitats are not being explored or used by Hangul. The satellite collared Hangul movements indicated that the animals showed upward movements to Dagwan alpine meadows of upper Dachigam but restricted their movements further in to the alpine meadows, possibly due to heavy disturbances of excessive livestock grazing there. 2. Management interventions are as such required towards expansion of Range of Hangul to alpine meadows of Upper Dachigam and potential corridor areas outside Dachigam NP identified through this research, so that these ideal summer habitats are recuperated and used by Hangul in summer as it used to in the past and to ensure gene flow between the Dachigam and adjoining range populations. 3. Hangul conservation breeding-cum- reintroduction programme is imperative to expand the range of Hangul by restocking and augmenting the small isolated Hangul populations in its relic range areas outside Dachigam National Park starting with the Overa Wildlife Sanctuary which has ideal disturbance free habitats available. 4. The Hangul species recovery programme through a project mode by initiation of Project Hangul on the pattern of Project Tiger is crucial to ensure Hangul species recovery and long term survival of the species and its landscapes in the region. 5. This research study as indicated by earlier studies by the Investigator (s) has revealed that besides poaching and continued degradation of Hangul summer habitats in Upper Dachigam, along with biotic interference in winter habitats, low breeding, female biased sex ratio, the problem of survival of the young and inadequate recruitment of calf to adulthood due to factors such as considerable predation by common Leopard, Asiatic Black Bear, dogs and meso-carnivores (Fox and Jackal) are major challenges for the long term survival of the Hangul in the landscape. 6. The study revealed a significant contribution of Hangul in the diet of Golden jackal (9.09%) and Red fox (6.45%). These ecological issues threatening the long term survival of Hangul need to be investigated and addressed further on long term basis through initiating a breeding biology study to better understand the causes of low breeding and fawn/calf survival in the Hangul population in Dachigam National Park and the adjoining landscape. 7. This research study and the earlier studies by the Investigator (s) has indicated that species due to its small population size, restricted range distribution, critically endangered status, ecological threats long Term Conservation Plan for Hangul Part II: Hangul Movement Pattern Study Using GPS-Satellite Telemetry and potentially low genetic variation is at the brink of extinction and needs immediate management interventions to reverse the declining trend in the population. The regulated monitoring of the Hangul populations on a long-term scientific basis using latest techniques of satellite collaring, camera trapping and population genomics is imperative. 8. Strengthening Hangul genome sequencing to understand the DNA mitochondrial based phylogeography of the species and Skull based genetic investigations to link the mitochondrial DNA analysis findings with the nuclear genetic analysis to further establish the degree of closeness or divergence between Hangul and the Bactrian deer.Item Assessing the impacts of Power-lines on avian species in the Arid plains of Western Gujarat : Final Technical Report(Wildlife Institute of India, Dehradun, 2021) Kumar, R.S.; Baroth, A.The Kachchh landscape in western Gujarat has witnessed rapid industrial growth in the last few decades. Also, the landscape has a high potential for wind energy generation and as a result, a number of wind farms have been established and continue to expand. Rapid industrialization and wind energy production has resulted in extensive power-line network crisscrossing the landscape. These energy infrastructures are known to pose potential risks to birds primarily those that are large-bodied in the form of collision and electrocution mortality. In lieu of this, a -four study was carried out in the Kachchh landscape to assess the impact of power-lines on large avian species in the arid plains of western Gujarat. In order to assess the power-line collision risk, data were collected at multiple levels, which includes (1) mapping the network of transmission lines in the Kachchh district, (2) GPS telemetry of six flamingos (two Greater and four Lesser Flamingo) (3) flight behavior of cranes around power-line, and (4) mortality surveys. The distribution and abundance of migratory Raptors were studied on three selected sites across Kachchh to know the electrocution risk to raptors. Also, surveys were carried out to collect data on space use by Common Crane with respect to wind farms to study the impacts of windmills on large birds. Finally, the data were analyzed using GIS modelling and various R packages to understand the space-use by large birds and identify risky power-line stretches that could pose threats to large birds. The analysis of Flamingo distribution surveys revealed that greater flamingos are widely distributed and occur in a much larger area than Lesser Flamingo. The analysis of tracking data showed that Flamingos make a greater number of flights during the breeding season. Further, it was documented that Lesser Flamingo use saltpans and mudflats primarily while Greater Flamingo used inland wetlands and coastal areas more often. The comparison of flight time showed that flamingos make most of the flights during night time. In the case of Cranes, Common cranes occurred in both agricultural and grassland habitats, while Demoiselle cranes were more localized and used only agricultural fields and feeding stations where local people practice food provisioning. Flamingos tracking data helped identify two main flight corridors, one at Nanda Bet and one at Surajbari, through which they made flights. These two corridors are also the only entry points from mainland Gujarat to Kachchh and hence are the corridor for transmission lines. As a result, these transmission lines are suggested to be a potential threat to Flamingos. The overlaying of transmission lines on the suitable habitat of Flamingos and Cranes revealed that 6% and 39% of the total power-line length is falling in Flamingo and Crane suitable habitats, respectively. It was found that 84.4% and 70% of total occasions, Lesser Flamingo and Greater Flamingo crossed power-lines during night times while making long-distance flights. The flight behavior observations of Common Crane around power-lines showed that 81% of total flocks observed altered either their flight path or their flight height.The data on raptor distribution with respect to distribution lines revealed that the Banni area has a high encounter rate (0.6 sightings/km) of raptor species and is home to several large raptors. The distribution lines in the Kachchh district do not have bird-safe spacing between conducting parts and hence can pose a potential risk to large raptors. The study investigating the impact of windmills on the space-use by Common Crane revealed that the encounter rate of Common Crane flocks in the areas dominated by windmills is six times less than in the areas with no windmills, suggesting possible functional habitat loss for the large birds due to windmills. This study is the first detailed landscape-scale effort to assess risks by energy infrastructure on avian species that forms a baseline for any future site-specific impact assessment studies in the region. This project identified the areas where powerlines likely pose a threat to large birds such as Flamingo and Crane. This study also suggests different strategies to minimize the impacts of existing and future energy infrastructure in different habitats in the Kachchh regionItem Study on ecology and migratory patterns of golden mahseer (Tor putitora) in river Ganga using radio telemetry techniques(Wildlife Institute of India, Dehradun, 2021) Johnson, J.A.; Dhawan, B.; Sivakumar, K.Golden Mahseer, Tor putitora is popularly known as ‘Himalayan mahseer’ and it is one of the largest freshwater fishes of India It occurs along the mid-hills stretch of Himalayan region including Shivaliks and part of Terai landscape. Over the years, the golden mahseer populations and their habitats have depleted due to various anthropogenic activities, hence, it is listed as an Endangered species in the IUCN Red List. Due to rapid hydro-power developments in the river valleys, habitats of golden mahseer have been fragmented, which in turn affects the ecology and spawning biology of golden mahseer. In order to, understand ecology, habitat use and movement pattern of golden mahseer, this project was proposed in 2017. The study was carried out in the two river systems of Western Himalaya: Kosi river in Ramnagar and Kolhu river in Kotdawar. To study the movement and migratory patterns of golden mahseer, 11 individuals were tagged with radio telemetry tags in the month of June (before onset of monsoon) to understand the migratory behaviour of tagged individuals. Manual tracking and monitoring were performed for all the tagged individuals to get location points and to generate movement data during the period from June-October, 2019. Correspondingly, information related to the fish habitat-type, depth, velocity, temperature and weather was collected. Simultaneously, habitat inventory was performed in three zones in both the rivers; upper, middle and down streams. At each zone 200-meter stream reach was selected for assessment of habitat availability, habitat use by different life history stages of golden mahseer (fingerlings, juveniles and adults). This study was performed for three seasons: Post-winter (March-April), Pre-monsoon (May-early June) and Post-Monsoon (October-November) during 2018-2019. Adults of the golden mahseer were mostly found in deep waters (> 2 m) with cool temperature (18-23o C) and low water velocity (0-0.4m/s). Adults prefer pool habitats with sand and gravel/cobbles as the dominant substratum. Similarly, availability of juveniles and fingerlings were recorded along the river basins and mapped to see the available nursery grounds of the golden mahseer. Habitat preference and microhabitat use were analysed for the available nursery grounds. The results for both the rivers exhibited backwater pools, secondary channels and run habitats as highly used habitats of fingerlings. And, run habitats were mostly as used habitats by juveniles in these rivers. Fingerlings were mostly seen at depth ranges (0.1-0.6m) with velocity (0-1.2m/s) where dominant substratum was gravel and sand. Similarly, depth range between (0.3- >1.8m), moderate velocity (0.3- >1.2m/s) and habitats with cobbles, bed rock and gravel as substrate were used by the juveniles. Based on the habitat availability and use by golden mahseer, Habitat Suitability Curves (HSC’s) for the youngs were formulated. The study revealed that variation in the habitat use by the fish, significantly varied during the monsoons. In the present study, we also recorded other fish species co-existing with golden mahseer in Kosi and Kolhu. Various threats which harm the golden mahseer population and their habitats in Kosi and Kolhu river were recorded and possible conservation measures are discussedItem Status of wildlife between Kota barrage and Jawahar Sagar Dam, Rajasthan(Wildlife Institute of India, Dehradun, 2021) Johnson, J.A.; George, Arun; Sharma, Megha; Kavin, D.; Sreelekha Suresh; Gopi, G.V.; Hussain, S.A.The present study examined the impacts of post-construction phase of the cable-stayed bridge on the aquatic wildlife and river habitat quality of the Chambal River between Kota barrage and Jawahar Sagar dam, Rajasthan. The study was carried out between March and November 2021. The study area was divided into 5 segments (each comprising 5 Km length of river) and the segment 1 stats from the Kota barrage. We recorded good signs/ activities of smooth-coated otters in the study area. This species is listed under “Schedule II” of IWPA 1972 and "Vulnerable" as per the IUCN Red List. A total of 10 sites within five river segments were surveyed for otter signs during pre-monsoon and post-monsoon seasons. Out of which five sites (50%) have shown positive otter signs (fresh spraints, tracks, and direct sightings) during pre-monsoon, whereas in the post-monsoon season the number of otters occupied sites have reduced to four sites (40%). The otter occupancy map indicated, the segment 2 (just above the bridge area) had high level of otter presence. We recorded good population of bird diversity between Kota barrage and Jawahar sagar dam. A total of 132 bird species, which includes 45 wetland birds (N=1569), 21 species of raptors (N=928), and 66 species of other terrestrial birds (N=1351) were recorded. These include two Critically Endangered (Indian Vulture and Red-headed Vulture), one Endangered (Egyptian Vulture), one Vulnerable (Woolly-necked Stork) and four Near Threatened species (River Tern, Black-headed Ibis, Oriental Darter and Alexandrian parakeet). During the study period, the raptors, Indian Vulture (Gyps indicus) and Egyptian vultures (Neophron percnopterus) were very commonly recorded and more number of nests were recorded in the third segment of the study stretch. In addition to vulture nests, we also observed nests of Bonelli's eagle (Aquila fasciata) and Dusky eagle-owl (Bubo coromandus) in the riverside escarpments. We also recorded nests of three waterbird species, which include Grey Heron (Ardea cinerea), Black-crowned night heron (Nycticorax nycticorax) and Woolly necked stork (Ciconia episcopus). Avian richness was varying with the season maximum number of waterbirds were observed during pre-monsoon (S=40), this same trend was followed by raptors (S=15) and other terrestrial birds (S=57). The bird occupancy map indicated that the segment 1 and segment 2 supported high abundance birds. We also recorded two species of aquatic reptiles, which are Mugger (Crocodylus palustris) and Indian roofed turtle (Pangshura tecta). Though, the river banks are mostly of rocky and large boulders with limited sand beach, we found quite a few nesting sites of muggers along the river banks. A total of 34 individuals and 23 individuals of muggers were recorded during pre-monsoon and post-monsoon respectively. The study area also supports good population of freshwater fishes. Rapid Assessment Report - 6 - During the study we recorded 46 species of fishes from the study area. Fishes belonging to the carp family were dominant in species richness (S=22). Among the 46 species of fish, three species are listed under threatened categories as per the IUCN Red List. During the study period the important physicochemical parameters of the water was monitored and the values were significantly varied between the river segments (p<0.05). The pH was found to be slightly alkaline across the river segments ranged from 7.08±0.02 and 8.55±0.01. Like conductivity, total dissolved solids in water (TDS) varied, ranging from 91.54 ppm at the second segment of the river in postmonsoon to 150 ppm at the second segment in pre-monsoon. All water quality parameters were found within the normal range of river water quality. Based on our findings we conclude that the cable-stayed hanging bridge of Kota does not have any negative impact on the wildlife of the Chambal River. The bridge is on the stable rocky gorge area, around 30 m above the water level across the river Chambal without any supporting billers from the riverbed. Thus, there is no direct contact between the river and bridge structure. Further, the technology used in this structure is marvellous, because it is totally vibration and notice proof. In this study we had some significant observations very close to this cable bridge such as an active nest of Egyptian Vulture (Neophron percnopterus) very close to this bridge (25° 8'23.14"N, 75°47'36.64"E), which is just 80 meters away from the bridge and a nest of Woolly-necked Stork (Ciconia episcopus) just 200 meters downstream from the bridge (25° 8'20.90"N, 75°47'33.11"E). Generally, Woolly-necked Storks are assumed to prefer isolated areas for nesting (Mehta 2020). Previous studies indicated that disturbance is one of the major factors for avoiding nesting habitat by Storks (Bouton et al., 2005). We also observed the permanent roosting sites of the Indian eagle-owl (Bubo bengalensis) nearer to this bridge (25° 8'16.12"N, 75°47'27.02"E). Likewise, we observed number of direct sighting of otters and crocodiles near as well as downstream regions of bridge when compared to other segments of the rivers. Moreover, the water quality parameters examined were within the normal range of river water quality. Thus, the present study revealed that the presence of cable-stayed bridge does not have any negative impact on the aquatic wildlife and quality of habitats in the Chambal River.Item Status of Tigers(Wildlife Institute of India, 2022) Qureshi, Qamar; Jhala, Y V; Yadav, S PIn 1973, the Project Tiger was established with the objective of utilizing the tiger’s functional role and charisma to garner public support and resources for preserving representative ecosystems. Since its inception, the project has expanded from nine tiger reserves covering 18,278 km2 to 53 reserves covering 75,796 km2, which account for 2.3% of India’s land area. Despite this, most tiger reserves and protected areas in India are existing as small islands in a vast sea of ecologically unsustainable land use, and many tiger populations are confined to small protected areas. Although some habitat corridors exist that allow tiger movement between them, most of these habitats are not protected areas, continue to deteriorate further due to unsustainable human use and developmental projects, and thereby are not conducive to animal movement. As tigers inhabit diverse habitats across a vast geographical expanse in India, we have categorized the tiger-bearing habitats into five major landscapes based on biogeography and interconnectivity of the habitats: 1) Shivalik-Gangetic plains, 2) Central India and Eastern Ghats, 3) Western Ghats, 4) North Eastern Hills and Brahmaputra Flood Plains, and 5) the Sundarbans. Each landscape is analyzed as a separate unit, since environmental and habitat covariates differ in their relationship with tiger abundance in each of the landscapes. Additionally, landscapes are an ecologically holistic entity because they function as a biological unit wherein tiger populations can share common individuals, a common gene pool, and can potentially disperse between populations. Given the current focus of landscape scale management philosophy currently being adapted, and that tiger movement between landscapes is rare in modern times, this division makes ecological sense, especially for management inferences and implementation.Item Mitigation and monitoring measures for proposed high-level bridge construction through Son Gharial Sanctuary on Bahri-Hanumana road state highway-52 near Jogdah, Madhya Pradesh(Wildlife Institute of India, Dehradun, 2022) Gopi, G.V.; Frank, S.J.D.; Arya, S.K.; Manisha, B.The present study was conducted during the month of June and July, 2022. We performed transect walks (each of minimum 5 km) and sign survey on the east and west direction of the proposed Jogdah bridge along the north and south river banks of the Son River. The survey was conducted with the aim to assess the faunal diversity and its abundance and identification of important breeding and roosting sites of the birds and reptiles.Item Status of tigers, co-predator and prey in Navegaon Nagzira Tiger Reserve (NNTR) - 2021(Maharashtra Forest Department and Wildlife Institute of India, 2022) Habib, Bilal Habib, B., Nigam P., Ramanujam, M., Pate, P., Singh, K., Bhalavi, S. B., Bhandari, A. and Akshay, J. Kanishka; Nigam, P.; Ramanujam, M.; Pate, P.; Singh, K.; Bhalavi, S.B.; Bhandari, A.; Kanishka, Akshay J.The Phase IV monitoring for the NNTR core and buffer was conducted from December 2020 – March 2021 as part of the project “Long term Monitoring of Tiger, Co-predator and their Prey in Tiger Reserves and other Tiger Bearing Areas of Vidarbha Maharashtra”. The field site for this exercise was Navegaon-Nagzira Tiger Reserve. The core and buffer areas of the tiger reserve were covered under this exercise. The objective of Phase IV Monitoring is to estimate the minimum number of tigers in the reserve using Capture-Recapture Sampling and density estimation of prey base using Distance Sampling.518 camera traps were placed in the core and buffer area of NNTR following a sampling grid of 2.01 sq. km in two blocks. An average camera trapping survey of 33 days in each block (Nagzira and Navegaon) with a sampling effort of 15,692 trap nights yielded data used for further analysis. Tiger density per 100 km2 based on the Spatially Explicit Capture-Recapture (SECR) model was 0.64 in the Navegaon-Nagzira Tiger Reserve while that of leopards based on the same method was 8.21. To estimate prey density, 172 line-transects were sampled 7 times during the sampling period, with a total walking effort of 2382 km. The individual densities in Nagzira and Navegaon Core for Sambar, Chital, Nilgai, Wild pig, and Gaur were estimated to be 1.26 ± 0.39, 8.89 ± 1.77, 9.14 ± 1.94, 8.27 ± 4.85, 5.50 ± 1.08 and 0.56 ± 0.25, NA, 10.42 ± 2.61, NA, 5.93 ± 1.68 respectively whereas the individual density estimates for Nagzira and Navegaon buffer for Sambar, Chital, Nilgai, Wild pig, and Gaur were 0.15 ± 0.13, 10.29 ± 1.96, 7.13 ± 1.43, 13.92 ± 8.29, NA and 0.49 ± 0.18, 7.61 ± 2.15, 11.75 ± 1.97, 12.03 ± 8.12, NA respectively. To study space use patterns and activity we used camera-trapping data from both core and buffer areas of Navegaon-Nagzira Tiger Reserve. Camera trap locations with the number of captures of each species were modeled in a GIS domain using IDW (Inverse distance weighted) interpolation technique to generate spatially explicit capture surfaces. The times recorded on camera trap photos provide information on the period during the day that a species is most active. Species active at the same periods may interact as predator and prey, or as competitors. Sensors that record active animals (e.g. camera traps) build up a record of the distribution of activity over the day. Records are more frequent when animals are more active and less frequent or absent when animals are inactive. The area under the distribution of records thus contains information on the overall level of activity in a sampled population. Species distribution was mapped seasonally using direct sighting data of wild ungulates from all the three seasons i.e. from winter 2019 to monsoon 2020 that was collected through regular patrolling using the MSTrIPES, a patrolling protocol mandated by NTCA to use in tiger reserves. MaxEnt, ArcGIS software was used for data preparation and final analysis. Factors that influence species distributions and habitat selection are of great importance to researchers and managers of wildlife. Here we used habitat variables namely: Land use Land cover (LULC), Digital Elevation Model (DEM), slope, aspect, stream delineation (Distance to streams), distance to the village, distance to road, distance to the railway line, and distance to the waterhole.Item Status of tigers, co-predator and prey in Painganga Wildlife Sanctuary 2021(Maharashtra Forest Department, Wildlife Institute of India, 2022) Habib, Bilal Habib, B., Banerjee, J., Reddy, M. S., Nigam, P., Jagtap, K., Puranik, S. and Koley, S.; Banerjee, J.; Reddy, M.S.; Nigam, P.; Jagtap, K.; Puranik, S.; Koley, S.Phase IV monitoring for the Painganga Wildlife Sanctuary was conducted from February – April 2021 as part of the project “Long Term Monitoring of Tigers, Co-Predators and Prey species in Vidarbha Landscape, Maharashtra, India”. The exercise aimed to cover an area of 399.98 km2 of the entire sanctuary. The objective of Phase IV Monitoring is to estimate the minimum number of tigers in the sanctuary using Spatially-Explicit-Capture-Recapture Sampling and density estimation of prey base using Distance Sampling. 45 pairs of camera traps were placed in the forested area of Painganga Wildlife Sanctuary following a sampling grid of 2 sq. km. in one block. The camera traps were active for 30 days yielding a sampling effort of 1722 trap nights of data which is used for further analysis. The minimum number of tigers and leopards individuals identified are 2 and 10 respectively. Tiger density per 100 sq. km. based on the Spatially Explicit Capture-Recapture (SECR) model could not be estimated due to low sample size while that of leopards based on the same method was 3.86 (SE ±0.165). To estimate prey density, 66 line-transects were laid randomly all over the division and were sampled 7 replicates during the sampling period, with a total walking effort of 924 km. The observations include Chital (Axis axis), Sambar (Rusa unicolor), Nilgai (Boselaphus tragocamelus), Chousingha (Tetracerus quadricornis), Langur (Semnopithecus sp), Wild Boar (Sus scrofa), Chinkara (Gazella bennettii), Blackbuck (Antilope cervicapra), Indian Hare (Lepus nigricollis) and Peafowl (Pavo cristatus). As per the observations, Nilgai (n = 236) is the most observed species followed by Langur, Chital, and Wild Boar. The overall prey density of Painganga WLS is 35.142 (SE ± 4.2723). Due to a low number of observations density estimation was not carried out for Chousingha, Chinkara, Blackbuck, Indian Hare, Peafowl, Sambar. To study the activity, we used the camera trap images. The times recorded on camera trap photos provide information on the period during the day that a species is most active. Species active at the same periods may interact as predator and prey, or as competitors. Sensors that record active animals (e.g. camera traps) build up a record of the distribution of activity over the day. Records are more frequent when animals are more active and less frequent or absent when animals are inactive. The area under the distribution of records thus contains information on the overall level of activity in a sampled population. We used IDW (Inverted distance weighted) to map the intensive area used by different animal species.Item Status of tigers, copredator and prey in Tadoba Andhari Tiger Reserve (TATR) 2021(Wildlife Institute of India, Dehradun, Maharashtra Forest Department, 2022) Habib, Bilal Habib, B., Nigam, P., Ramgaokar, J., Guruprasad, G., Kale, N., Bhagwat, S. S., Krishnan, A., Hushangabadkar, P., Sheikh, S. (2022): Status of Tigers, Co-Predator and Prey in Tadoba Andhari Tiger Reserve (TATR) 2021; Nigam, P.; Ramgaokar, J.; Guruprasad, G.; Kale, N.; Bhagwat, S.S.; Krishnan, A.; Hushangabadkar, P.; Sheikh, S.Phase IV monitoring for the Tadoba Andhari Tiger Reserve (TATR) core and buffer was conducted from February – May 2021 covering an area of 1315 sq. km. as a part of the project “Long-term Monitoring of Tigers, Co-predators and Prey in Tiger Reserves and other Tiger bearing areas of Vidarbha, Maharashtra”. The objective of Phase IV Monitoring is to estimate the minimum number of tigers in the reserve using Spatially Explicit Capture-Recapture Sampling and density estimation of prey base using Distance Sampling. Camera traps were placed in 621 grids of 2.01 sq. km. area each in the core and buffer area of TATR in two blocks. In each sampling block, camera traps were active for 27 - 44 days. During 83 days of camera trapping survey with a sampling effort of 20,965 trap nights, 85 adult individual tigers were photographed in the sampled area of TATR. Estimated population (N) of tigers based on the best fit (SECR Heterogeneity) model was 86 (SE ± 0.71). Tiger density per 100 sq. km. based on the Spatially Explicit Capture-Recapture (SECR) model was 6.31 (SE ± 0.70). Along with tigers 114 adult individual leopards were photographed in the sampled area of TATR and estimated population (N) based on the best fit (SECR Heterogeneity) model was 118 (SE ± 2.17). Leopard density per 100 sq. km. based on the Spatially Explicit Capture-Recapture (SECR) model was 7.07 (SE ± 0.67). To estimate prey density, 133 line transects in core and buffer of TATR were sampled 7 times during the sampling period, with a total walking effort of 1862 km. During the sampling, a total of 1163 animal/bird observations were made. The overall individual density per km2 of major prey species in TATR was Gaur 2.16 (SE ± 0.39), Sambar 1.71 (SE ± 0.29), Chital 2.65 (SE ± 0.55), Wild Boar 3.73 (SE ± 0.84), Langur 3.35 (SE ± 0.71), Barking Deer 0.42 (SE ±0.08), Nilgai 1.04 (SE ± 0.25), Black-naped Hare 0.68 (SE ± 0.15) Peafowl 1.79 (SE ± 0.25) and Grey Jungle Fowl 8.19 (SE ± 1.02). A basic understanding of sympatric carnivore ecology with asymmetric competition enables us to hypothesize that to coexist and not just co-occur there must be niche segregation on at least one of the three axes: space, time, and/or diet. To understand how three large sympatric predators co-occur in space and in time, camera trapping was carried out. Temporal activity overlaps were derived by using kernel density. All the sympatric predators were found to co-occur in the sampled area of TATR. There was a distinct difference in the space-use pattern observed for all three carnivores and a strong spatial segregation pattern found between Tigers, Dholes, and Leopards. It showed significant segregation and avoidance of each other’s space. There was a significant overlap between the temporal activity pattern of tigers and leopards. While tigers and leopards show a strong, unimodal, nocturnal activity pattern, dholes show a bimodal, crepuscular activity pattern.Item Status of Tigers, Co-Predator and Prey in Pandharkawada Forest Division (Territorial) 2021(Wildlife Institute of India, Dehradun, Maharashtra Forest Department, 2022) Habib, Bilal Status of Tigers, Co-Predator and Prey in Pandharkawada Forest Division (Territorial) 2021; Ramarao, S.V.; Jagtap, K.P.; Nigam, P.; Koley, S.The Phase IV monitoring for the Pandharkawada Forest Division (Territorial) was conducted from March –April (2021) as part of the project “Long Term Monitoring of Tigers, Co-Predators and Prey species in Vidarbha Landscape, Maharashtra, India”. The exercise aimed to cover an area of 655.336 km2 of the forested area of the entire division. The objective of the Phase IV Monitoring is to estimate the minimum number of tigers in the Pandharkawada Forest Division using Spatially-Explicit-Capture-Recapture Sampling and density estimation of prey species using Line transect based Distance Sampling. 110 pairs of camera traps were placed in the forested area of Pandharkawada Forest Division following a sampling grid of 2 km2 in all four blocks. The camera traps were active for average 30 days in each block yielding a sampling effort 3508 of trap nights of data which is used for further analysis. From the camera trap photographs 11 tigers (unique to Pandharkawada Forest Division) and 10 leopards have been identified. Tiger density per 100 km2 based on the Spatially Explicit Capture-Recapture (SECR) model was 2.356 (SE ± 0.727) in the forest division while that of leopards based on the same method was 2.99 (SE ±1.03). To estimate prey density, 84 line-transects were laid randomly all over the division and were sampled 7 times during the sampling period, with a total walking effort of 1176 km was invested. The observations include chital (Axis axis), nilgai (Boselaphus tragocamelus), chousingha (Tetracerus quadricornis), langur (Semnopithecus sp), wild boar (Sus scrofa), chinkara (Gazella bennetii), Indian hare (Lepus nigricollis) and peafowl (Pavo cristatus). As per the observations, Nilgai (n=278) is the most observed species followed by Wild boar (n=77), Peafowl (n= 54), Indian hare (n=45) and Chital (n=44). The overall prey density of Pandharkawada Forest Division is 10.977 (SE± 1.19). Due to very low observations (n<20) densities of chousingha and chinkara could not be estimated. To study the activity, we used the camera trap images. The times recorded on camera trap photos provide information on the period during the day that a species is most active. Species active at the same periods may interact as predator and prey, or as competitors. Sensors that record active animals (e.g. camera traps) build up a record of the distribution of activity over the day. Records are more frequent when animals are more active and less frequent or absent when animals are inactive. The area under the distribution of records thus contains information on the overall level of activity in a sampled population. We used IDW (Inverted distance weighted) to map the intensive area used by different animal species.
- «
- 1 (current)
- 2
- 3
- »