Technical Reports

Permanent URI for this communityhttp://192.168.202.180:4000/handle/123456789/7

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Patterns of Human-Wildlife Conflict in Chandrapur, Maharashtra, India
    (Wildlife Institute of India, Dehradun, 2022) Habib, B.; Nigam, P.; Praveen, N.R.; Ravindran, A.
    Human-wildlife conflict (HWC) is the negative interaction between human or human property and wildlife and is a growing cause for concern among conservationists and scientists globally. Although HWC is a global phenomenon, there are certain differences in its manifestation as well as magnitude in developed versus developing nations. Developed regions of the world exhibit lower levels of direct dependence on forest ecosystems and their resources, as well as exclusionary management of the wildlife habitats. India, being a developing nation, is witness to an increasing intensity of human-carnivore conflict due to the fast-shrinking percentage of forest cover, that act as natural habitats of many carnivore species, due to a combination of factors including human population explosion, agricultural expansion, and large-scale developmental activities, leading to fragmentation and destruction of forest cover all across the country. The Central Indian Landscape (CIL) is one of the regions of high tiger populations and density in India with 6 Tiger Reserves featuring heavily as source populations, including Tadoba Andhari, Pench, Kanha, Satpura, and Melghat Tiger Reserves. But there is a disproportionate decline in forest cover as well as quality, which means that even though the populations of large carnivores are thriving, there isn’t enough pristine forest to support their growing numbers. This eventually leads to a spill-over of the carnivores into surrounding human-dominated landscapes (HDL). This acts as one of the major reasons for the burgeoning number of conflict cases between humans and large carnivores. The Vidarbha Landscape (VL) of the state of Maharashtra is facing a similar decline in forest cover leading to an increase in conflict cases. Records of conflict incidents were collected from the Greater Tadoba Landscape (GTL) which covers the divisions of Brahmapuri, Chandrapur & Central Chanda, along with the Tadoba Andhari Tiger Reserve (TATR), in the Chandrapur Circle. Using these records, hotspots of livestock depredation and attacks on humans were mapped using a hotspot analysis tool in ArcGIS. Various scientific and non-scientific methods continue to be tested to slow down the increasing rate of HWC across the world. One of the major hurdles in the implementation of a universal mitigation method to curb the number and impact of HWC is the heavy influence of local factors including topography, vegetation, and human demography of the region. This requires an intensive study of the patterns and causes of conflict in a given region. Studying conflict hotspots and understanding the emerging spatial and temporal patterns is a quintessential step in the process of mitigating the HWC of any landscape. An important step in that direction is the establishment of a comprehensive database, which can be used for trend analysis and predictions. The hot spot analysis of human-carnivore conflict for tigers, leopards, and sloth bears enables visualization of the spatial distribution of events of attacks on humans as well as livestock depredation by each species, hence aiding in the development of site-specific management strategies to mitigate the effects of human-carnivore conflict
  • Item
    Status of Tigers, Co-Predator and Prey in Tipeshwar Wildlife Sanctuary 2021
    (Wildlife Institute of India, Dehradun, Maharashtra Forest Department, 2022) Habib, B.; Nigam, P.; Banerjee, J.; Puranik, S.; Jagtap, K.; Koley, S.
    Phase IV monitoring for the Tipeshwar Wildlife sanctuary was conducted from March –April (2021) as part of the project “Long Term Monitoring of Tigers, Co-Predators and Prey species in Vidarbha Landscape, Maharashtra, India”. The exercise aimed to cover an area of 148.63 km2 of the entire sanctuary. The objective of Phase IV Monitoring is to estimate the minimum number of tigers in the Tipeshwar WLS using Spatially-Explicit-Capture-Recapture Sampling and density estimation of prey base using Distance Sampling. 62 pairs of camera traps were placed in the forested area of Tipeshwar WLS following a sampling grid of 2 sq. km. in one block. The camera traps were active for 30 days yielding a sampling effort of 2206 trap nights of data which is used for further analysis. Tiger density per 100 km. sq. based on the Spatially Explicit Capture-Recapture (SECR) model was 7.07 (SE ± 0.218) in the sanctuary while that of leopards based on the same method was 3.86 (SE ±0.165). To estimate prey density, 13 line-transects were laid randomly all over the division and were sampled 7 times during the sampling period, with a total walking effort of 182 km was invested. The observations include chital (Axis axis), sambar (Rusa unicolor), nilgai (Boselaphus tragocamelus), chousingha (Tetracerus quadricornis), langur (Semnopithecus sp), wild boar (Sus scrofa), chinkara (Gazella bennetii), Blackbuck (Antilope cervicapra), Indian hare (Lepus nigricollis) and peafowl (Pavo cristatus). As per the observations, Nilgai (n=50) is the most observed species followed by Chital (n=27). The overall prey density of Tipeshwar WLS is 17.82 (SE± 3.81). Due to low number of observations densities of chousingha, chinkara, blackbuck, langur, Indian hare, peafowl, sambar, wild boar could not be estimated. To study the activity, we used the camera trap images. The times recorded on camera trap photos provide information on the period during the day that a species is most active. Species active at the same periods may interact as predator and prey, or as competitors. Sensors that record active animals (e.g. camera traps) build up a record of the distribution of activity over the day. Records are more frequent when animals are more active and less frequent or absent when animals are inactive. The area under the distribution of records thus contains information on the overall level of activity in a sampled population.