Technical Reports
Permanent URI for this communityhttp://192.168.202.180:4000/handle/123456789/7
Browse
7 results
Search Results
Item Tiger corridors of the Eastern Vidarbha landscape(NTCA and Wildlife Institute of India, Dehradun, 2016) Mondal, Indranil; Habib, Bilal; Nigam, Parag; Talukdar, GautamItem Movement of Radio-collared tigers in the Eastern Vidarbha Landscape, Maharashtra, India(Wildlife Institute of India, Dehradun, 2018) Habib, Bilal; Nigam, Parag; Hussain, Zehidul; Ghaskadbi, Pallavi SurendraTo understand the movement ecology of tigers in the Eastern Vidarbha Landscape, focusing on individual patterns of space use in general, utilization distribution in different areas and landscape, spatio-temporal activity and effect of environmental features on animal movement, the point-wise objectives are as follows: 1. To understand the movement of tigers that drives population connectivity on a landscape scale and effect of environmental features on dispersal. 2. To validate the modeled corridors and identify new functional corridor and habitats in a highly dynamic landscape. 3. Directly aiding effective conservation and management of tigers beyond the Protected Area (PA) system as a result of real-time data from radio-collars.Item Telemetry based tiger corridors of Vidarbha Landscape, Maharashtra India(Wildlife Institute of India, Dehradun, 2021) Habib, Bilal; Nigam, P.; Mondal, I.; Hussain, Z.; Ghaskadbi, P.; Govekar, R.S.; Praveen, N.R.; Banerjee, J.; Ramanujam, R.M.; Ramagaonkar, J.The Vidarbha Landscape (VL) is very important as it harbours a population of about 331 tigers and forms the connecting link between the central and southern Indian tiger populations. It plays a pivotal role in exchange of individuals and thereby facilitates gene flow between these two populations increasing the viability of tiger populations in India. There are 8 protected areas or wildlife divisions where these tigers live, but these refuges are scattered like islands in a sea of human dominated landscape. Therefore, knowing the locations of tiger movement corridors and probable areas of human tiger conflict is especially important for a wildlife manager.Item Status of tigers, co-predator and prey in Akola Wildlife Division, Maharasthra, India 2021(Wildlife Institute of India, Dehradun, 2022) Habib, Bilal ; Nigam, P.; Banerjee, J.; Reddy, M.S.; Nimje, A.; Khairnar, M.N.; Patil, J.; Ray, S.Phase IV monitoring for Akola Wildlife Division was conducted from February – May 2021 covering an area of 300 sq. km. as a part of the project “Long-term Monitoring of Tigers, Co-Predators and Prey in Tiger Reserves and other Tiger bearing areas of Vidarbha, Maharashtra”. The objective of the Phase IV Monitoring is to estimate the minimum number of tigers in the reserve using Capture-Recapture Sampling and density estimation of prey base using Distance Sampling. A total of 103 camera traps (pairs) were placed in the 4 wildlife sanctuaries (viz. Dnyanganga WLS, Katepurna WLS, Karanja-Sohol WLS and Lonar WLS) of Akola Wildlife Division following a sampling grid of 2 sq. km. In each wildlife sanctuary, camera traps were active for 25-30 days. During 90 days of camera trapping survey with a sampling effort of 3,090 trap nights, 42 adult individual leopards were photographed in Akola Wildlife Division. 28 adult individual leopards were photographed in Dnyanganga WLS and population size (N) based on the best fit (SECR Heterogeneity) model was 28 (SE ± 1.0). 9 adult individual leopards were photographed in Katepurna WLS and population size (N) based on the best fit (SECR Null) model was 10 (SE ± 1.27). 3 and 2 adult individual leopards were photographed in Karanja-Sohol WLS and Lonar WLS respectively. Leopard density per 100 sq. km. based on the Spatially Explicit Capture-Recapture (SECR) model was 13.42 (SE ± 2.56) and 25.61 (SE ± 8.85) for Dnyanganga WLS and Katepurna WLS respectively. To estimate prey density in Dnyanganga WLS, 42 line transects were sampled times 6-7 during the sampling period, with a total walking effort of 513 km. Overall during the sampling, 336 animal/bird observations were made. The overall density of major prey species (Wild Boar 14.90/sq. km., Nilgai 12.51/sq. km., Peafowl 2.79/sq. km., Chinkara 1.40/sq. km. and Four Horned Antelope 1.33/sq. km.) as estimated using distance sampling was 24.19 /sq. km. A basic understanding of sympatric carnivore ecology with asymmetric competition enables us to hypothesize that to coexist and not just co-occur there must be niche segregation on at least one of the three axes: space, time, and/or diet. To understand how large sympatric predators co-occur in space and in time, camera trapping was carried out. Temporal activity overlaps were derived by using kernel density. Leopards were found in all 4 wildlife sanctuaries. There was a distinct difference in the space-use pattern observed for all three carnivores and a strong spatial segregation pattern found between Leopards, Hyenas and Dholes. It showed significant segregation and avoidance of each other’s space. While leopards show a strong, bimodal, nocturnal activity pattern, Hyenas have a strong, unimodal activity pattern in Dnyanganga WLS. In Katepurna WLS, leopards show a strong unimodal, nocturnal activity pattern and dholes show a bimodal, crepuscular activity pattern.Item Status of Tigers, Co-Predator and Prey in Pench Tiger Reserve (PTR) 2021(Wildlife Institute of India, Dehradun, Maharashtra Forest Department, 2022) Habib, Bilal; Nigam, P.; Ramanujam, M.; Pathak, A.; Shukla, P.; Dabholkar, Y.; Bhowmick, I.The Phase IV monitoring exercise as a part of the project “Long Term Monitoring of Tigers-predators and prey in tiger reserves and other bearing areas of Vidarbha, Maharashtra, for Pench Tiger Reserve was conducted from January 2021-July 2021. This exercise, having three main objectives, the status of prey, estimation of minimum tiger and leopard numbers, and capacity building among staff flagged off with a capacity-building workshop in January 2021. Line transects surveys aimed to estimate the density of prey species were carried out in two blocks with an effort of 7 days for each transect line. Among all the prey species highest density was recorded for Chitals 24.28 (±4.83)/km2 in the core. The density of other species are as follows Sambar 6.08 (±0.98), and Gaur 1.56 (±0.39)/km2, Wild pig 4.31 (±0.90), Langur 17.02 (±3.56), Nilgai 1.91 (±0.41), Barking Deer 0.59 (±0.15), Hare 0.81 (±1.12), Peafowl 2.49 (±0.60). In the buffer area, the density of Chital was 8.63 (±4.15) and of Sambar was 1.36 (±0.40). Camera trapping based on the spatial capture-recapture framework was conducted on the same locations of the same grids (2 km2) similar to the previous cycle (2020) which were selected based on a rigorous sign survey that provided sign encounters of tiger, leopard, and other co-predators. This year the trapping was completed in a single block with 311 camera stations resulted in 8415 trap nights during May 2021-June 2021. The minimum number of individual tigers captured was 44 along with 60 leopards. Tiger density based on the Spatially Explicit Capture-Recapture framework was 4.78(±0.7)/100km2 and the density of leopard was 7.55 (±1.02)/100km2. To study space use and activity patterns we have used camera-trapping data from both core and buffer areas of Pench Tiger Reserve. Higher activity overlap was recorded between tigers and leopards (Dhat1=0.88) among predators. Camera trap locations with the number of captures of each species were modeled in a GIS domain using IDW (Inverse distance weighted) interpolation technique to generate spatially explicit capture surfaces. The times recorded on camera trap photos provide information on the period during the day that a species is most active. Species active at the same periods may interact as predator and prey, or as competitors. Sensors that record active animals (e.g. camera traps) build up a record of the distribution of activity over the day. Records are more frequent when animals are more active and less frequent or absent when animals are inactive. The area under the distribution of records thus contains information on the overall level of activity in a sampled population.Item Status of Tigers, Co-Predator and Prey in Pandharkawada Forest Division (Territorial) 2021(Wildlife Institute of India, Dehradun, Maharashtra Forest Department, 2022) Habib, Bilal ; Ramarao, S.V.; Jagtap, K.P.; Nigam, P.; Koley, S.The Phase IV monitoring for the Pandharkawada Forest Division (Territorial) was conducted from March –April (2021) as part of the project “Long Term Monitoring of Tigers, Co-Predators and Prey species in Vidarbha Landscape, Maharashtra, India”. The exercise aimed to cover an area of 655.336 km2 of the forested area of the entire division. The objective of the Phase IV Monitoring is to estimate the minimum number of tigers in the Pandharkawada Forest Division using Spatially-Explicit-Capture-Recapture Sampling and density estimation of prey species using Line transect based Distance Sampling. 110 pairs of camera traps were placed in the forested area of Pandharkawada Forest Division following a sampling grid of 2 km2 in all four blocks. The camera traps were active for average 30 days in each block yielding a sampling effort 3508 of trap nights of data which is used for further analysis. From the camera trap photographs 11 tigers (unique to Pandharkawada Forest Division) and 10 leopards have been identified. Tiger density per 100 km2 based on the Spatially Explicit Capture-Recapture (SECR) model was 2.356 (SE ± 0.727) in the forest division while that of leopards based on the same method was 2.99 (SE ±1.03). To estimate prey density, 84 line-transects were laid randomly all over the division and were sampled 7 times during the sampling period, with a total walking effort of 1176 km was invested. The observations include chital (Axis axis), nilgai (Boselaphus tragocamelus), chousingha (Tetracerus quadricornis), langur (Semnopithecus sp), wild boar (Sus scrofa), chinkara (Gazella bennetii), Indian hare (Lepus nigricollis) and peafowl (Pavo cristatus). As per the observations, Nilgai (n=278) is the most observed species followed by Wild boar (n=77), Peafowl (n= 54), Indian hare (n=45) and Chital (n=44). The overall prey density of Pandharkawada Forest Division is 10.977 (SE± 1.19). Due to very low observations (n<20) densities of chousingha and chinkara could not be estimated. To study the activity, we used the camera trap images. The times recorded on camera trap photos provide information on the period during the day that a species is most active. Species active at the same periods may interact as predator and prey, or as competitors. Sensors that record active animals (e.g. camera traps) build up a record of the distribution of activity over the day. Records are more frequent when animals are more active and less frequent or absent when animals are inactive. The area under the distribution of records thus contains information on the overall level of activity in a sampled population. We used IDW (Inverted distance weighted) to map the intensive area used by different animal species.Item Status of tigers, co-predator and prey in Painganga Wildlife Sanctuary 2021(Maharashtra Forest Department, Wildlife Institute of India, 2022) Habib, Bilal ; Banerjee, J.; Reddy, M.S.; Nigam, P.; Jagtap, K.; Puranik, S.; Koley, S.Phase IV monitoring for the Painganga Wildlife Sanctuary was conducted from February – April 2021 as part of the project “Long Term Monitoring of Tigers, Co-Predators and Prey species in Vidarbha Landscape, Maharashtra, India”. The exercise aimed to cover an area of 399.98 km2 of the entire sanctuary. The objective of Phase IV Monitoring is to estimate the minimum number of tigers in the sanctuary using Spatially-Explicit-Capture-Recapture Sampling and density estimation of prey base using Distance Sampling. 45 pairs of camera traps were placed in the forested area of Painganga Wildlife Sanctuary following a sampling grid of 2 sq. km. in one block. The camera traps were active for 30 days yielding a sampling effort of 1722 trap nights of data which is used for further analysis. The minimum number of tigers and leopards individuals identified are 2 and 10 respectively. Tiger density per 100 sq. km. based on the Spatially Explicit Capture-Recapture (SECR) model could not be estimated due to low sample size while that of leopards based on the same method was 3.86 (SE ±0.165). To estimate prey density, 66 line-transects were laid randomly all over the division and were sampled 7 replicates during the sampling period, with a total walking effort of 924 km. The observations include Chital (Axis axis), Sambar (Rusa unicolor), Nilgai (Boselaphus tragocamelus), Chousingha (Tetracerus quadricornis), Langur (Semnopithecus sp), Wild Boar (Sus scrofa), Chinkara (Gazella bennettii), Blackbuck (Antilope cervicapra), Indian Hare (Lepus nigricollis) and Peafowl (Pavo cristatus). As per the observations, Nilgai (n = 236) is the most observed species followed by Langur, Chital, and Wild Boar. The overall prey density of Painganga WLS is 35.142 (SE ± 4.2723). Due to a low number of observations density estimation was not carried out for Chousingha, Chinkara, Blackbuck, Indian Hare, Peafowl, Sambar. To study the activity, we used the camera trap images. The times recorded on camera trap photos provide information on the period during the day that a species is most active. Species active at the same periods may interact as predator and prey, or as competitors. Sensors that record active animals (e.g. camera traps) build up a record of the distribution of activity over the day. Records are more frequent when animals are more active and less frequent or absent when animals are inactive. The area under the distribution of records thus contains information on the overall level of activity in a sampled population. We used IDW (Inverted distance weighted) to map the intensive area used by different animal species.