Technical Reports/Books/Manuals
Permanent URI for this communityhttp://192.168.202.180:4000/handle/123456789/7
Browse
4 results
Search Results
Now showing 1 - 4 of 4
Item Assessent of prey populations for lion re-introduction in Kuno wildlife sanctuary, Central India(Wildlife Institute of India, Dehradun, 2005) Johnsingh, A.J.T.; Qureshi, Q.; Goyal, S.P.Realizing that it is unwise to keep the only free-ranging population of Asiatic lions (Panthera leo persica) in one location (Gir forests), the Government of India made an effort to establish the second population in Chandraprabha Wildlife Sanctuary (WLS, 96 km2), Uttar Pradesh, in 1957. This effort, for various reasons, did not succeed. In 1993-94, with the aim of finding a second home for the lions, a team from Wildlife Institute of India (WI!) surveyed three wildlife habitats in the states of Rajasthan and Madhya Pradesh. Among the three, Kuno WLS (345 km2) was identified as the most suitable site. With assistance from the Government of India, a twenty-year project was initiated in 1995, to establish a disturbance-free habitat here for reintroducing lions. Between 1996 and 200 I, twenty-four villages, with about 1547 families, have been translocated from the Sanctuary by the Madhya Pradesh Forest Department. The Madhya Pradesh Government has also demarcated a 1280 km2 Kuno Wildlife Division, encompassing the Sironi, Agra and Morawan forest ranges around the Sanctuary. In order to assess whether the Sanctuary has sufficient wild prey base, the WII was requested to asses the availability of prey in early 2005. With the assistance of34 forest staff 17 transects totaling 461 km were surveyed over an area of 280 km2 The density of catchable wild prey (chital, sam bar, nilgai, wild pig) by lions was 13 animals!km2. There are about 2500 cattle, left behind by the translocated people which are considered to be the buffer prey for lions to tide over the likely problem of drought periodically killing wild ungulates. With the implementation of the recommendations such as the control of poaching, grassland management, building rubble wall around the Division and water augmentation, we predict a substantial rise (ca.20 animals!km2) in the wild prey base for lions by end of2007. This prey density would be able to support the first batch of five lions (three females and two males) to be reintroduced in the beginning of 2008. Even if all the three females raise cubs, there will be sufficient wild prey by the end of 2009 to support them. Meanwhile efforts should be made to implement all the recommendations given in this report with immediate effect and get the whole hearted support of Gujrat Government to make this historic venture a success.Item Ecology of Dhole (Cuon alpinus Pallas) in Central India(Wildlife Institute of India, Dehradun, 2006) Acharya, Bhaskar B.; Johnsingh, A.J.T.; Sankar, K.The objectives of the project in Pench Tiger Reserve, Madhya Pradesh, were to estimate the seasonal abundance of dhole prey species, the diet of the dhole packs from their scats and kills, to determine patterns of habitat use and range sizes of dhole packs, to estimate temporal changes in size and composition of dhole packs, and the processes behind such changes, to screen captured dhole and other animals for diseases, and estimate the probability of contact with potential disease carriers, to devise standardised protocols for dhole population surveys and to estimate dhole population size for the Tiger Reserve.Item Conservation status of tiger and associated species in the Terai Arc Landscape, India(Wildlife Institute of India, Dehradun, 2004) Johnsingh, A.J.T.; Ramesh, K.; Qureshi, Q.; David, A.; Goyal, S.P.; Rawat, G.S.; Rajapandian, K.; Prasad, S.The Indian portion of Terai Arc Landscape (TAL), stretching from Yamuna river in the west to Valmiki Tiger Reserve, Bihar in the east, spreads across five states along the Shivaliks and Gangetic plains. This unique Landscape consists of two distinct zones: (i) bhabar, characterized by a hilly terrain with course alluvium and boulders, and sal mixed & miscellaneous vegetation communities and (ii) terai, characterized by fine alluvium and clay rich swamps dominated by a mosaic of tall grasslands and sal forests. The terai, in particular, is listed among the globally important 200 ecoregions for its unique large mammal assemblage. Over the decades as a result of conquest of malaria, establishment of numerous settlements and consequent increase in human population, this Landscape has become highly fragmented and degraded. This has led to the local extinction of species such as one-horned rhinoceros (Rhinoceros unicornis), swamp deer (Cervus duvauceli) and hog deer (Axis porcinus), for example, west of Sharda river. Despite its ecological richness and faster rate of degradation and species extinction, conservation initiatives are far from desired in this Landscape, perhaps due to inadequate information and lack of coordinated efforts. Given this circumstance, the Wildlife Institute of India (WII) submitted a proposal to Save the Tiger Fund (National Fish and Wildlife Foundation, USA) to carry out a survey of TAL on the Indian side, which is ca. 42,700km2 with a forest area of ca. 15,000 km2. Save the Tiger Fund allotted US $53,500 and an 18-month project was initiated in July 2002. The project objectives were to (i) develop spatial data base on the TAL, (ii) assess tiger (Panthera tigris) and large ungulate distribution and status, (iii) describe the status of the Landscape and its vegetation characteristics and (iv) document the socioeconomic conditions of the local people and major disturbance factors. Indian Remote Sensing (1C/1D) satellite images with the spatial resolution of 188m (WiFS) and 23.5m (LISS III) pixel sizes, and Survey of India topographic maps were used for habitat mapping and other spatial database. The study team surveyed the entire Landscape twice between October 2002 and June 2003 for assessing the status of tiger and other associated large mammal species, and habitat conditions. Extensive sampling of 246 foot transects covering 1001.2km and 1530 circular plots, with nested design, were carried out across the TAL. Demographic and socioeconomic profiles of people were derived primarily from the raw data of 1991 Census. Owing to the applied nature of the project, it was decided to hold a two-day workshop to share the findings and to attain synergy among Forest Officials, NGOs and other conservation agencies for implementation in the field. The study revealed that the TAL contains homogenous vegetation communities of eight broad types, but the structural components vary highly across the Landscape. The tiger habitats on the Indian side are in nine blocks (referred as Tiger Habitat Blocks, THB) and the largest block (ca. 4,000 km2) is around Corbett TR. The forests in Kalsi, Dehradun and Haridwar Forest Divisions in Uttaranchal and Bijnor Plantation Division, Bahraich and Shrawasti Forest Divisions in Uttar Pradesh were devoid of tiger. Thirteen corridors that potentially connect these nine blocks have been identified. When connectivity with the Nepal side is taken into account, the nine THBs can be pooled into five larger units (referred as Tiger Units, TU). Among these, TU II, which is in the bhabar tract and includes Corbett TR, is the most intact one. TU IV (Pilibhit FD-Suklaphanta Reserve-Kishanpur WLS-Dudhwa NP- Bardia NP-Katernighat WLS) is the most extensive terai habitat. Each piece of habitat and connectivity in these Units are crucial and at the same time, are threatened by anthropogenic pressures. Ungulate distribution and relative abundance in TAL corresponds to the high variation or heterogeneity in habitat features. However, the overall status of prey (ungulate) availability is reasonably better in this Landscape, largely owing to the interspersion of Protected Areas between Reserve Forests. The evidence is clear that tiger distribution and its abundance are linearly related to wild ungulate prey such as chital (Axis axis) that has wider spatial distribution. Sambar (Cervus unicolor) and wild pig (Sus scrofa) also contribute substantially in deciding the occurrence of tiger in bhabar and terai regions respectively. The domestic dog was identified as a reliable indicator of disturbance that impedes tiger occurrence. Undisturbed hilly (bhabar) areas such as Corbett TR, which usually have many deep nallahs, providing hideouts and abundant prey (sambar, chital and wild pig) support substantial population of tiger. The terai tall grass habitats, which provide adequate cover, as in Kishanpur WLS and Dudhwa NP, with prey such as chital, pig and swamp deer, is the second best. It appears that in a few years time, tigers may cease to exist in habitats like Sohagibarwa-west (THB VIII), an isolated habitat patch in Uttar Pradesh, which is under enormous anthropogenic pressures. Leopards tend to avoid terai habitats and high-density tiger areas, but are still common in areas extirpated of tiger. Data from the Census of India 1991, for 33 tehsils (units of District) within the study area, indicated that the bhabar, largely west of Sharda river, had significantly lower human density (334/km2) and higher percentage of forest cover (36%). The corresponding figures for terai (east of Sharda river) are 436/km2 and 17% respectively. It appears that the bhabar areas, at present, are in a better position to buffer firewood dependency of the people. Human population increase, ever growing habitat encroachments, poaching, firewood extraction and bhabar grass (Eulaliopsis binata) collection for rope making, stealing of tiger and leopard kills, and boulder mining causing enormous disturbances and fragmentation are the major problems identified. The extensive empirical information (distribution and abundance) collected on vegetation parameters, ungulates and tiger can be used as baseline data to initiate monitoring programmes. In addition, the monitoring should include establishment of adequate number of one-hectare plots and line transects for periodic evaluation of habitat conditions and prey abundance respectively. The study recommends that Chilla-Motichur and Gola river corridors should be established on priority basis and the conservation status of THB IV containing Suklaphanta Wildlife Reserve-Pilibhit FD-Kishanpur WLS should be strengthened. If done, the former will constitute the largest (ca. 8000km2) tiger and elephant habitat anywhere along the foothills of the Himalaya and the latter will ensure the future of one of the finest terai habitats (ca. 1200km2). Initiation of a conservation programme like establishing Rajaji-Shivalik Tiger Reserve is urgently needed to eliminate boulder mining in Yamuna river to ensure the ranging and occurrence of tigers between Shivalik FD and the Kalesar-Simbalbara forests, the western most limit of tiger distribution range. Raising of fuel wood plantations with community participation, use of fuel-efficient chulas, resettling of gujjars (migratory pastoralists) and eight key villages, shifting of one factory and weaning people from bhabar grass collection and conservation education programmes are also recommended. There was a consensus in the two-day workshop held on 6-7 November 2003 in WII that the Nepal model, with a strong scientific foundation and involvement of local people, needs to be adapted for the Indian side of TAL. Cross border cooperation between India and Nepal is a must to ensure the long-term conservation of tiger and its habitat in this LandscapeItem Impacts of Management Practices on Lion and Ungulate Habitats in Gir Protected Area(Wildlife Institute of India,Dehradun., 1990) Sharma, Diwakar; Johnsingh, A.J.T.study on the impacts of management practices on lion and ungulate habitat was conducted in Gir Protected Area (PA) from June 1991 to July 1994. The Gir PA includes Gir Wildlife Sanctuary and National Park. It is situated between 20° 55' to 21° 20N and 70° *25 to 71° 15' E in the Southern part of Kathiawar peninsula in western Giijarat. Gir PA (hereafter Gir) is located about 60km South of Junagadh. The area which was 3,107 sq km in 1877 (Joshi 1976) has been presently reduced to 1,412 sq km, of which about 259 sq km is national nark. The terrain is hilly, altitude ranging from about 100m above mean sea level to 528m above mean sea level. The hills run in all directions, have moderate slopes, and constitute an important catchment for Kathiawar peninsula. The rocks are volcanic in origin, consisting of Deccan traps and are the oldest exposed rocks in Gir (Patel 1992). As many as seven types of soils have been categorized based on their colours (Munsell colour chart) ranging from dark yellowish brown to very dark greyish Brown (Pandit et al. 1992). The climate is semi-arid with three distinct seasons; summer (March-mid June), monsoon (mid June - mid October) and winter (late October to February). Gir has dry deciduous forest - 5A/Clb (Champion & Seth 1968). West Gir has Tectona grandis dominated vegetation. In eastern Gir Anogeissus pendula replaces Tectona grandis but the vegetation is dominated by thorny species such as Acacia and Zizyphus. Gir is the last refuge of the wild Asiatic lions (Panthera leo persica) and long term conservation of the Asiatic lion is an overriding management objective of Gir. In order to improve habitat conditions in Gir, the park authorities, over the last 20-25 years have made some management interventions such as relocation of some maldharis (local graziers), reduction in livestock grazing (especially migrant livestock during the rainy season) and fire control. These measures have led to vegetational improvement and increase in wild ungulate and lion populations. Understanding this vegetational improvement was thought to be crucial to determine the extent of management intervention required. The objectives of this study were: 1. to investigate the impact of maldharis on vegetation; 2. to investigate the habitat utilization by wild ungulates; and 3. to find out the impact of management practices (such as use of fire, creation of water holes, grass harvesting, maldhari relocation and creating of national park). iii The vegetation study was conducted in 211 plots of 20m X 20m each. Vegetation data included counts and measurement of trees, seedling, and shrubs. Status of trees and seedlings in terms of lopped, cut, dead or intact was recorded to study the effect of anthropogenic factors. Data on environmental variables i.e. slope and soil parameters (pH, electrical conductivity, potash, phosphorus, organic carbon, texture, moisture and water retaining capacity and colour) was collected to study their impact on the vegetation. Habitat utilization by ungulates was investigated through direct and indirect evidence. Indirect evidence included pellet group count and browse consumption. Pellets groups of chital (Cervus axis), sambar (Cervus unicolor), nilgai (Boselaphus tragocamelus), chinkara (Gazella gazelld), chowsingha (Tetracerus quadricomis) and wild pig (sus scrqfa) were counted from ten 10m X 2m belt transects in and around 100 vegetation plots. Direct count of ungulates was carried out using vehicle transects at twelve routes all over Gir in the summers of 1992, 1993 and 1994. Data on cover and animal evidence was collected in summer (April-May) and winter (December- January) of 1991,1992, and 1993. Browse consumption by ungulates was estimated on trial for few major browse species. The browse production and consumption was estimated through diameter weight relationship of twings based on linear regression. Habitat factors included were cover at 0.5m, 1.0m and 1.75m height, canopy, tree species diversity, browse availability, grass cover, leaf litter, distance from nes (hamlet), distance from water, slope and grazing by livestock. Cover was measured from five, fixed Im X lm quadrats in the 100 vegetation plots. Relationship of vegetation associations with environmental factors and ungulate abundance with habitat factors were investigated using multivariate analysis. Fifteen vegetation associations were categorized based on two way indicator species analysis (TWINSPAN) computer programme. These were: 1. Acacia catechu - Zizyphus nummularia - Aristida adscensionis 2. Apluda mutica - Themeda quadrivalvis - Sehima nervosum 3. Anogeissus latifblia-Acaciacatechu- erminaliacrenulata 4. Anogeissus latifblia - Acacia catechu 5. Acacia spp. - Zizyphus mauritiana 6. Zizyphus mauritiana 7. Acacia nilotica - Zizyphus mauritiana 8. Tectona grandis - Acacia catechu - Zizyphus mauritiana 9. Tectona grandis - Acacia catechu - Terminalia crenulata 10. Tectona grandis 11. Acacia catechu - Lannea coromandelica - Boswellia serrata 12. Tectona grandis - Acacia spp. - Wrightia tinctoria 13. Tectona grandis mixed 14. Mixed and 15. Syzygium ubicundum - Pongamiapinnata associations. iv Tree density and diversity were all maximum in Mixed association while seedling density and shrub volume were maximum in Syzygium rubicundum - Pongamia pinnata association. Soil pH, moisture and potash were important environmental factors which determined the vegetation distribution (Canonical correspondence analysis-CANOCO; P=.O5). However, different vegetation associations were governed by various environmental variables separately and just one or a combination of some variables could not explain the distribution of vegetation associations. Twelve habitat types were classified based on similarity in the vegetation associations and TWINSPAN analysis. These habitats were given a simple name and a name that represented the habitats. The following twelve habitats were categorized: 1. Scrubland 2. Savanna 3. Anogeissus - Acacia - Terminalia 4. Anogeissus - Acacia 5. Thom forest 6. Teak - Acacia - Zizyphus 7. Teak forest 8. Teak - Acacia - Boswellia 9. Teak - Acacia - Wrightia 10. Teak mixed 11. Mixed forest 12. Riverine Mixed habitat was more diverse while riverine was most dense in terms of cover. Thom forest provided maximum browse to the ungulates. Chital (Cervus axis) showed high use of Thom forest habitat while sambar (Cervus unicolor) used more Mixed, Riverine and Teak - Acacia - Zizyphus habitat. Data on other ungulates was not sufficient for statistical analysis. CANOCO showed that human disturbance governed the wild ungulate abundance in summer while ground cover and human disturbance were decisive factors in winter. Sambar and nilgai were away from disturbance while chital were relatively unaffected by disturbance, in both summer and winter. Chinkara was observed mostly in the east Gir, a place with conditions like savanna and with more human disturbance. Impacts of management practices was investigated in vegetation plots and pellet transects, and by comparing them at varying distances from nes and water points, between national paric and wildlife sanctuary, burnt and unbumt areas and between harvested and unharvested localities. Late serai stages of vegetation succession (Thomy - with Acacia and Zizyphus) were reached after 10 yrs of nes relocation and such stages were utilized more by ungulates. Impact of current neses on vegetation was severe only up to 500 m. Chital evidence were maximum, whereas sambar least, nearest a nes. The overall variation was significant only for chital both in summer and winter. There was significant variation in both summer and winter in chital evidence, not sambar, found at various distances from water holes. Maximum chital evidence were nearest the water holes whereas sambar were 1-2 km away from water. Controlled and cool fires did not change the vegetation composition and tree density significantly. Grass harvested areas produced more grass (1701±179 kg/ha) than unharvested ones (377±249 kg/ha). National park had significantly more tree density (500/ha), and less chital evidence (80 pellet groups/ha) than in wildlife sanctuary (480/ha, and 140/ha respectively). Teak thinning on an experimental basis is recommended to promote chital abundance. Water management by reviving disused wells in riverine tract, removal of at least 30 neses in a phased manner is suggested. Grass harvesting for local people and cool season rotational burning in unharvested areas are recommended.
