Technical Reports

Permanent URI for this communityhttp://192.168.202.180:4000/handle/123456789/7

Browse

Search Results

Now showing 1 - 10 of 14
  • Item
    Rapid survey and mapping of medicinal plants in forest divisions of Garhwal region, Uttarakhand : Executive summary
    (Wildlife Institute of India, Dehradun and Uttarakhand Forest Department, 2012) Rawat, G.S.
  • Item
    Status, distribution and conservation perspectives of lesser florican in the North-Western India: a survey report
    (Wildlife Institute of India, Dehradun, 2011) Bhardwaj, G.S.; Sivakumar, K.; Jhala, Y.V.
    The Lesser Florican Sypheotides indica, a species endemic to the Indian subcontinent, is largely seen during the monsoon season in north-western India, where it breeds. Its population and range is believed to be decreasing at an alarming rate due to breeding habitat loss and threats in the non-breeding habitats, believed to be in south and south-east India. In this connection, to understand the present status and distribution of Lesser florican in the north-western India i.e. in Gujarat, Madhya Pradesh and Rajasthan, a survey following an established protocol (Sankaran 2000) was carried out in the month of August 2010, which is a part of breeding season of this species, when most of males display in the grasslands. A total of 84 individual Lesser Floricans (83 male and 1 female) were sighted in three states of north-western India, which is 65% less than the sightings reported in 1999 by Dr. Sankaran. It was found significantly fewer sightings than reported in 1999 in all grasslands surveyed (t=2.81, df=14, p<0.05). Of the 169 potential grasslands available for floricans in the north-western India, 91 grasslands were surveyed, which include grasslands surveyed during 1999. Of the surveyed grasslands, Lesser Floricans were found in 24 grasslands as against 37 grasslands in 1999. Among the three states, more sightings of Lesser Florican were reported in the state of Gujarat (N=54) followed by Rajasthan (N=18) and Madhya Pradesh (N=12). But in 1999, more sightings of florican were reported in Gujarat (N=141) followed by Madhya Pradesh (N=63) and Rajasthan (N=34). More than 55% of grasslands in Gujarat that were reported with florican in 1999 (Sankaran 2000) were observed without florican in 2010. More or less similar situation was in Madhya Pradesh also. Population and habitat of Lesser Florican in the north-western India was observed to be continuously declining at an alarming rate. Lack of a National Policy on grassland management, habitat degradation, plantations, poor landuse planning, pesticide pollution, invasive species, inadequate coverage of florican habitats in the Wildlife Protected Area Network and lack of knowledge on the non-breeding habitats of this species are observed to be major threats to this species.
  • Item
    Ecology of two endemic turtles in the Western Ghats
    (Wildlife Institute of India, Dehradun, 2010) Vasudevan, K.; Pandav, B.; Deepak, V.
    This project was initiated on the 16th January 2006 with an aim to generate natural history information on two out of the three endemic species of terrestrial turtles. India has 28 species of freshwater turtles and tortoises, of them three species are endemic. The endemic species: Caneturtle, Vijayachelys silvatica; Travancore tortoise Indotestudo travancorica; Leith’s softshell Nilssonia leithii, are restricted to the southern peninsula and the Western Ghats. In this study the focal species were the Cane turtle and the Travancore tortoise which had their distribution in the Western Ghats. The objectives of the project were (i) to estimate the population density of Travancore tortoise and cane turtle in a fragmented landscape; (ii) to quantify the diet of these two species and describe the feeding ecology with respect to their role in seed dispersal; (iii) to identify threats to the turtle population based on their habitat use ranging pattern and food habits and recommend measures for their conservation; (iv) to carry out a survey of these two species along the Western Ghats to ascertain the exact distribution in the context of Protected area network in the region. The study employed methods to study the population, diet and ranging patterns of the Cane turtle and the Travancore tortoise in Anamalai and Parambikulam Tiger Reserves. In the case of Travancore tortoise, the animals were searched on forest trails scattered in the reserves and repeated over three years to determine the proportion of area occupied accounting for imperfect detections. These surveys revealed that about 82% of the area surveyed is occupied by the tortoise, suggesting that the reserves hold sizeable population of the tortoise. The occupancy of the Travancore tortoise was negatively influenced by anthropogenic disturbance levels and positively influenced by the availability of water bodies and grass marsh in different sites. Only 35% of the sites occupied by the species resulted in detections, suggesting that it was cryptic. The important constituents of its diet were grass, other plant matter, invertebrates and other animal matter. The vayal (grass openings within woodland) habitat might be crucial for foraging by Travancore tortoise. The five individuals that were radio-tagged used an area from 5 to 35 ha covering evergreen, bamboo and open scurb-grass marshes. The animals spent about 98% of their time under leaf litter, logs, rocks crevices, tree holes, termite or pangolin burrows, bamboo tickets and under grass. In the case of cane turtle, various search methods employed did not yield detections and therefore, an intensive area was combed intensively. This resulted in detections of the elusive cane turtle. During the study spanning over four years, 42 ha of the evergreen forests in the reserve resulted in sightings of 27 different individuals of the cane turtle. This suggests that the species occurs in high density in the evergreen forests. Six cane turtles were fixed with radio-transmitters and monitored for two years. They used an area from 3.5 to 14.2 ha restricted to the evergreen forests alone. They also had extensive overlap in their home-ranges, suggesting no territoriality in the species. The movement of the animals were influenced by temperature and rainfall in the intensive study area. Diet of the species consisted of forest floor invertebrates, seeds and other plant material. The field observations on feeding on a large land snail and aggressive encounters between males of the cane turtle were the highlights of the study on the species. A survey of the three endemic species of turtles was taken up in the fifth year of the project. The survey involved visiting 12 sites in the states of Karnataka and Tamil Nadu. The potential sites where the species might be found were visited and the locals were interviewed in order to document the occurrence of the species. This resulted in one new locality record for cane turtle and two new records for Travancore tortoise. The Leith’s softshell was reported from five different locations in Karnataka and Tamil Nadu based on the interviews with locals. The sites occupied by the species were located within and outside protected areas. So far the study has resulted in three peer reviewed publications and two presentations in international conference. Based on the findings of the study it could be inferred that the Travancore tortoise is sensitive to human disturbance. This might be the consequence of exploitation of the animal by the locals in the reserves where the study was conducted. It is not uncommon to find locals using domesticogs during their forays into the forest. We speculate that there is some level of subsistence exploitation of the species in the region. The behaviour and ranging pattern of the species make them cryptic for detection by humans, but vulnerable to detection by domestic dogs. The study revealed that there is poor awareness among wildlife protection staff in the reserves on the species in general. Increasing the awareness of the staff could result in curbing subsistence exploitation of the species in the reserves. The vayals in the reserve are crucial habitats for the species; therefore, their protection and monitoring should be of importance for the persistence of the tortoise population. In the case the cane turtle, contrary to our initial expectations they survive in high densities (60 individuals in 1 sq. km) in the middle and low elevation evergreen forests (between 10 – 1000 m above mean sea level). The Karian Shola National Park is having a large population of this species which is of importance of the management of the protected area. The species is extremely stenotypic, showing strong preference to a narrow range of microclimatic variation prevailing in evergreen forests that are below 1000 m elevation in the Western Ghats. This indicates that the low elevation evergreen forest areas are crucial habitats for the species. Our intensive study on the species spanning over four years did not yield much information on the reproductive ecology of the species, because of their secretive lives. We recommend studies on the reproductive biology of the species, which might be important in the context of conservation breeding of the species. In the case of Leith’s softshell, we suggest extensive surveys to document the distribution, the status of population and, the genetic and morphological variation in the populations in peninsular India.
  • Item
    Distribution and abundance of birds and mammals in the Southern Indian ocean, larsemann hills and princess astrid coast East Antarctica
    (Wildlife Institute of India, Dehradun, 2010) Jayapal, R.; Ramesh, K.
    The spatial distribution and abundance of sea birds, penguins and pack ice seals along the Southern Ocean, Ingrid Christensen and Princess Astrid Coast during 29th Indian Scientific Expedition to Antarctica was carried out between November 2009 and March 2010. A total of 34 species of birds with an encounter rate of 9.82/ nautical miles2 were recorded. High species turnover of sea birds was observed between 40° and 50° S longitude. Six aerial sorties were flown along the Ingrid Christensen and Princess Astrid Coast to count penguins and seals along the coast, totalling a length of approx. 1200 km. Adelie and Emperor penguins were recorded with encounter rate of 0.63 ± 0.20 (#/nm ±SE) and 3.81 ± 1.68 (#/nm ±SE) respectively at Ingrid Christensen casts. At Princess Astrid Coast more number of Adelie penguins (1.22 ± 0.12/nm ±SE) was recorded when compared to Emperor penguin (0.60 ± 0.2/nm ±SE). In the present survey, a total of 3601 hauled-out seals were counted from six aerial sorties totalling a length of approx. 1200 km, with each sortie lasting about two hours. Weddell seal Leptonychotes weddellii was the most commonly sighted species in both the areas surveyed (98.2%), and had an encounter rate of 2.9 seals/km. The other species encountered during the survey were crab-eater seal Lobodon carcinophagus (1.7%) and leopard seal Hydrurga leptonyx (0.03%). Group size of hauled-out weddell seals varied considerably and ranged from solitary to maximum of 42 individuals. The median group size of weddell seals hauled-out along the Ingrid Christenson coast was found to be significantly different between the December 2009 and January 2010 survey. Further, along this Coast weddell seals were found hauled-out mainly close to the ice shelf and their spatial distribution appeared to be influenced by the extent of sea ice in the area.
  • Item
    Status of the Tigers, co-predators, and prey in India 2010
    (Wildlife Institute of India, Dehradun, 2010) Jhala, Y.V.; Qureshi, Qamar; Gopal, Rajesh; Sinha, P.R.
    This report synthesizes the results of the second countrywide assessment of the status of tigers, co-predators and their prey in India. The first assessment was done in 2006 and its results subsequently helped shape the current policy and management of tiger landscapes in India. The current report is based on data collected in 2009-2010 across all forested habitats of 17 tiger States of India with an unprecedented effort of about 477,000 man days by forest staff, and 37,000 man days by professional biologists. The results provide spatial occupancy, population limits, and abundance of tigers, habitat condition and connectivity (Fig E1). This information is crucial for incorporating conservation objectives into land use planning across landscapes so as to ensure the long term survival of free ranging tigers which serve as an umbrella species for the conservation of forest biodiversity. The study reports a countrywide increase of 20% in tiger numbers but a decline of 12.6% in tiger occupancy from connecting habitats. The methodology consisted of a double sampling approach wherein the State Forest Departments estimated occupancy and relative abundance of tigers, co-predators, and prey through sign and encounter rates in all forested areas (Phase I). Habitat characteristics were quantified using remotely sensed spatial and attribute data in a geographic information system (Phase II). A team of trained wildlife biologists then sampled a subset of these areas with approaches like mark-recapture and distance sampling to estimate absolute densities of tigers and their prey (Phase III), using the best modern technological tools (remote camera traps, GPS, laser range finders). A total effort of 81,409 trap nights yielded photo-captures of 635 unique tigers from a total camera trapped area of 11,192 km2 over 29 sites. The indices and covariate information (tiger signs, prey abundance indices, habitat characteristics) generated by Phase I & II were then calibrated against absolute densities using Generalized Linear Models (GLM) and the relationships were used for extrapolating tiger densities within landscapes. Tiger numbers were obtained for contiguous patches of occupied forests by using average densities for that population block. Numbers and densities were reported as adult tigers with a standard error range. Habitat suitability for tigers was used to model least cost pathways joining tiger populations in a GIS and alternative routes in Circuit scape. These were aligned on high-resolution satellite imagery to delineate potential habitat corridors
  • Item
    Dugong distribution, habitat and risks due to Fisheries and other anthropogenic activities in India
    (Wildlife Institute of India, Dehradun, 2013) Sivakumar, K.; Nair, A.
    The dugong (Dugong dugon), also called the sea cow, is one of the four surviving species in the order Sirenia, and it is the only existing species of herbivorous mammal that lives exclusively in the sea, including Indian waters. Conservation of the dugong, which is a flagship species, represents coastal conservation. This protected species occurs in the Gulf of Mannar, Palk Bay, Gulf of Kutch and Andaman and Nicobar Islands. The population of the dugong, which was once abundant, is assumed to have reduced to about 200 individuals in India. This number and the range of the dugong are believed to be continuously declining. Several reasons have been attributed to the decline in the dugong population, including sea grass habitat loss and degradation, gill netting, disease, water pollutants, indigenous use and poaching. This study was initiated to understand the dugong’s current distribution range and the magnitude of the anthropogenic threats faced by it and its habitat in India. The objectives include (1) determining the status and distribution of the dugong population in India, (2) understanding the risks faced by the dugong populations and their habitats, (3) assessing the status of artisanal fisheries in identified dugong habitats, (4) identifying the key areas where dugongs are present to conserve them and (5) understanding the attitude of fishermen towards conservation of dugongs. Three zones, namely the Gulf of Kutch, Andaman and Nicobar Islands and Gulf of Mannar–Palk Bay were identified as the study area on the basis of information published on dugong sightings, stranding records and seagrass presence. A standardised dugong catch/bycatch questionnaire developed by the CMS-UNEP Dugong MOU Panel was used for interview surveys after it was translated into regional languages. Region-specific threats to the dugong and its habitat were identified. Occupancy models were built in the program PRESENCE to identify critical dugong habitats using dugong sighting data from the past 5 years (2008 to 2012). The range of variables that influenced occupancy and detection were also assessed. Dugong occupancy was greatest in the Gulf of Mannar and Palk Bay, followed by the Andaman and Nicobar Islands, and lowest in the Gulf of Kutch. At present, the overall occupancy of the dugong in Indian waters is estimated to be 11% of the total surveyed area. Only 21% of the area sampled in Tamil Nadu was found to be occupied by dugongs. The corresponding proportion was 12% in the iii Andaman and Nicobar Islands and 1% in the Gulf of Kutch. Overall, the dugong distribution range has significantly decreased by about 85% in the distribution range of the dugong in India. Dugongs are also exist in regions outside the existing protected area (PA) network. Thus, conservation planning should also focus on dugong habitats outside PAs. Preventive measures, such as affording greater protection to dugongs and making fisheries sustainable with dugong friendly gear and craft, especially in the critical dugong habitats identified, are recommended. It is of the utmost importance to secure and strengthen community participation in the management of dugongs and their habitats in India. Model
  • Item
    Tigers of the Transboundary Terai Arc Landscape: Status, distribution and movement in the Terai of India and Nepal
    (Wildlife Institute of India, Dehradun, 2014) Chanchani, P.; Lamichhane, B.R.; Malla, S.; Maurya, K.; bista, A.; Warrier, R.; Nair, S.; Almeida, M.; Ravi, R.; Sharma, R.; Dhakal, M.; Yadav, S.P.; Thapa, M.; Jnawali, S.R.; Pradhan, N.M.B.; Thapa, G.J.; Yadav, H.; Jhala, Y.V.; Qureshi, Qamar
    While the conservation of tigers is emphasized in protected areas throughout their range countries, the species continues to be distributed in forests of varying protection status, and in habitats that span international borders. Although India and Nepal share a long border in the Terai belt, this area that was once forested is now largely agricultural, and wildlife is restricted to remnant forest patches. This study details the status of tiger and ungulate prey species populations in around 5300 km2 transboundary Terai Arc Landscape (TAL), documents the movement of tigers between forests in India and Nepal based on camera trap data and makes specific recommendations for the conservation of tigers and their prey in Transboundary TAL. Notable protected area within the study area includes Chitwan and Bardia National Parks in Nepal and Dudhwa and Valmiki Tiger reserves in India. This study was carried out in 7 protected areas and reserve forests in India, and 5 protected areas, three biological corridors (protected forests) and adjoining forest patches in Nepal. Occupancy surveys for animal signs involved 4496 kilometres of foot surveys in Nepal and India. Between November 2012 and June 2013, these sites were sampled with a total of 1860 camera trap stations, with a total sampling effort of 36,266 trap nights. Nearly 9000 km2 of tiger habitat was sampled with camera traps. 3370 kilometres of line transects (n=239) were sampled in the landscape. Cumulatively, this sampling exercise is the largest survey effort of its kind in the Terai Arc Landscape to date, and involved partnerships between National and State government agencies, research institutions, non-governmental organizations and members of local communities who participated in the research. Data analysis was carried out using contemporary analytical methods including site occupancy models, spatial explicit capture recapture models and distance sampling framework. Site occupancy was estimated to be 0.55 (0.44-0.66) in Nepal and 0.77 (0.67-0.85) in the region between Nandhaur WLS and Suhelwa WLS in India. A total of 239 individual adult tigers were identifi ed from camera trap photos, of which 89 were adult males and 145 were adult females. 5 animals could not be ascribed a gender from camera trap data. Site-specific minimum tiger numbers varied from 3 in Banke National Park in Nepal to 78 in Chitwan National Park, also in Nepal. Tiger numbers and/or abundances in other sites within the Transboundary landscape were estimated to lie within this range, with notably large populations in Bardia National Park and Pilibhit Tiger Reserve, and smaller populations in Dudhwa National Park, and Kishanpur Wildlife Sanctuary and Shuklaphanta Wildlife Reserve. Tiger densities in the Transboundary Terai Arc Landscape range between 0.16/100 km2 in Banke National Park, Nepal to 4.9/ 100 km2 in Kishanpur Wildlife Sanctuary, India. Spatial heterogeneity in tiger densities has been mapped for the entire study area. Densities of principal ungulate prey species of tigers were found to vary widely across sites, and while density estimates in some protected areas in Nepal were as high as 92.6/km2 (Bardia National park), they were seven fold lower in other sites in India and Nepal (13.6 in Dudhwa National Park and 10.7 in Banke National Park). While habitat connectivity has severely been compromised in this landscape, tigers exist as one wholly-connected population in the protected areas of Chitwan National Park, Nepal and Valmiki Tiger Reserve, India as well as in Shuklaphanta Wildlife Reserve, Nepal and the Lagga-Bagga Block of Pilibhit Tiger Reserve, India. Other than these sites we photo-documented movement of tigers between Nepal and India along the Khata corridor (between Bardia National Park and Katerniaghat Wildlife Sanctuary) and Shuklaphanta - Tatarjanj - Pilibhit Corridor. We failed to document tiger movement in four other corridors: Boom-Brahmadev, Laljhadi, Basanta, and Kamdi. Forest connectivity has severely been compromised in these corridors by land use change. There are notably large differences in tiger and prey densities within and between sites. This study points to the infl uence of habitat (forest-grassland mosaics and riparian areas) on the distribution and density of tigers and their prey. However, these factors alone are likely to provide incomplete explanations for observed patterns. Observed patterns of tiger and prey densities are likely to also be on account of anthropogenic pressures on wildlife and their habitats in the form of poaching, livestock grazing and the entry of large numbers of wood and grass collectors deep into wildlife habitats. Another significant threat to the survival of tigers and other mammals arises from the proposed development of new roads in Nepal and India that may severely degrade the region’s fragile corridors. The establishment of new settlements near existing tiger habitats constitutes encroachment, and poses a significant challenge for conservation in some parts of this landscape. The continued use of two forest corridors between Nepal and India by tigers and other large mammals is encouraging. The dispersal of tigers between sites plays an important role in maintaining demographically stable and genetically robust populations. The most pressing task for conservation is to protect these corridors and to re-establish connectivity between other sites by restoring corridors that have been eroded by development and land-use change. There are also significant opportunities to build conservation and development programs that emphasize the protection of the Terai’s remnant wilderness areas, while also attending to legitimate needs of forest-dependent human communities. This report also identifies key interventions that are needed to secure the future of tigers in the Terai. These include policy initiatives, important interventions to create functional biological corridors, key enforcement and protection measures, prescriptions for community involvement in conservation and identifying important themes for future research and monitoring. To set tangible management and conservation targets, recommended actions under these themes have been listed separately for twenty four sites in the transboundary TAL. The future of tigers and other large mammals in Nepal and India are intertwined, as is the wellbeing of the peoples of the Terai who live along this forested frontier. Building effective partnerships for conservation between the governments, conservation organizations and civil society of India and Nepal, and working toward common goals are imperative to maintain and promote populations of tigers and other endangered wildlife in this unique eco-region.
  • Item
    The status o ftigers, copredators and prey in India 2014
    (Wildlife Institute of India, Dehradun and National Tiger Conservation Authority, 2014) Jhala, Y.V.; Qureshi, Qamar; Gopal, R.
    The tiger is an icon for conservation across forested systems of Asia. The Government of India has used the charismatic nature of the tiger to promote on conservation of biodiversity, ecosystem functions, goods and services by launching Project Tiger in 1972 and subsequently using legislation to gazette tiger reserves and by allocating appropriate resources for their conservation. Since 2006 the status of tigers in India is being assessed every four years across all potential habitats in 18 Indian states within the distribution range of the tiger. This document reports the results of the third country wide assessment conducted in 2013-14. undisturbed forests with good prey populations. Tiger population (excluding < 1 year cubs) was estimated to be 2226 (SE range 1945 to 2491) in India (Table 2.1). Amongst tiger reserves Corbett had the largest tiger population estimated at 215 (range 169-261) tigers, four tiger reserves (including Bandipur, Nagarhole and Kaziranga) had over 100 tigers. Tiger Reserves accounted for over 70% of all the tigers in India (Table 2.2). Leopard population in India was estimated to be 7910 (SE range 6566 to 9181) (Table 2.3). The state of Madhya Pradesh had the highest number of leopards at 1817 followed by Karnataka at 1129 leopards. The leopard population was estimated only within forested habitats in tiger occupied states, therefore, it should be considered as a minimum number since leopards, unlike tigers, are also found outside forests. This is the first attempt to estimate leopard abundance at landscape scales. Distribution range and spatial extent of all major mammalian species are provided in the report. Tiger occupancy and abundance has substantially increased in the Shivalik Hills and Gangetic Plains landscape, primarily due to improved status of tigers in the state of Uttrakhand. Rajaji-Corbett tiger population is now contiguous with Dudhwa-Pilibhit population since the intervening forests of Haldwani and Terai Divisions along with new protected areas like Nandhor Wildlife Sanctuary have tiger occupancy and reasonable tiger density. The landscape would benefit from supplementation of tigers in Western Rajaji that will assist in the occupancy of Shivalik forests in Uttar Pradesh and Kalesar Wildlife Sanctuary in Haryana. Maintaining and enhancing trans-boundary corridor connectivity between India and Nepal is an essential element of tiger, elephant and rhino conservation in this landscape. This connectivity is threatened by the new India-Nepal border road and special care is needed to ensure that proper mitigation measures are in place. Tiger status has improved within the Central Indian landscape with an increase in tiger occupancy and numbers. This increase is contributed primarily by the states of Maharashtra and Madhya Pradesh. Indravati Tiger Reserve in Chhattisgarh was assessed for the first time. Sampling was limited to accessible areas of Palamau Tiger Reserve in Jharkhand. Conservation efforts need to focus on tiger populations in Orissa (Simlipal-Satkosia tiger reserves), Palamau landscape and in Northern Andhra Pradesh (Kawal Tiger Reserve). Sanjay-Guru Gasidas-Palamau landscape holds promise for future expansion of tiger population provided planned conservation investment continues. Tiger populations in Central Indian landscape are highly fragmented and some are quite small in numbers, therefore, their survival is dependent on corridor connectivity. Corridors in this landscape are threatened by developmental activities like mining and infrastructure. Appropriate safeguards and mitigation measures need to be implemented for development projects in this region so as to ensure that corridor connectivity between tiger populations is not compromised. Madhya Pradesh has also taken initiative to provide resources for corridor restoration by implementing corridor specific management plans. Western Ghat Landscape has maintained its tiger status across all the three states of Karnataka, Kerala and Tamil Nadu. The world's largest tiger population (Nagarhole-Bandipur-Mudumalai-Wayanad- 2 Satyamangalam-BRT) has further increased to about 585 tigers covering 10,925 km . New Protected Areas declared by Karnataka on the boarder of Goa has assisted in tiger dispersal into Goa and their movement further north into Radhanagri and Sahayadri Tiger Reserve. This region needs more conservation focus as it viii STATUS OF TIGERS IN INDIA, 2014 holds great potential for tiger and biodiversity conservation. It would be timely to consider declaring inter-state tiger reserve between Karnataka, Goa and Maharashtra. There is loss in tiger occupancy in the intervening habitat between Kudremukh-Bhadra and Anshi-Dandeli, threatening to disrupt connectivity between these tiger populations. Populations south of the Palghat gap (Parambikulum-Anamalai, Periyar, and Kalakad Munduntherai) have improved; attention is needed to conserve forest connectivity between these three major populations.Only select areas were sampled in the North Eastern Hills and Brahmaputra Flood Plains landscape, therefore, tiger occupancy and numbers from this region are minimal estimates. The tiger population in Kaziranga-Karbi Anglong-Paake-Nameri-Orang is the largest source in this landscape (about 163 tigers) and should be managed as a single metapopulation with strategies to address movement corridors between these populations. Dibang and Namdapha were assessed through Scat DNA and opportunistic camera traps and show good promise for tiger and biodiversity conservation but need more conservation investment. Manas-Buxa along with areas of Bhutan landscape have potential for sustaining higher number of tigers and are currently below their carrying capacity. Enhanced protection in this region will help build prey and subsequently tiger population in the long-term. However, the management focus for these Protected Areas should be for forest biodiversity and not become tiger centric, since tiger density in many of these close canopy forests would be inherently low. The entire Sundarban tiger reserve and parts of the Twenty Four Parganas were camera trapped in 2013-14. Tiger population of about 76 (62 to 92 tigers) has remained stable since 2010 and is likely to be near its carrying capacity. Sundarban tiger population is contiguous with that of Bangladesh and transboundary management including anti-poaching strategy and management of ship traffic in specific water channels needs to be implemented for long-term conservation of this unique tiger. Genetic analysis based on a panel of 11 micro-satellites of 158 tiger individuals from across India has shown that at the country scale the tiger population of the North-East is genetically different. The most unique genetic unit of tigers are from Odisha and these need high conservation priority as their population is on a declining trend. The western-arid zone tigers of Ranthambore-Sariska showed a different genetic composition from those of terai and central Indian tigers with some genetic contribution from both these regions. At the local scale the tiger populations south of the Palghat gap differed from the Northern Western Ghat population. The tigers from Sahyadri (northern Western Ghats) shared their genetic makeup with tigers from central India. This preliminary country scale genetic analysis shall assist in planning reintroduction and supplementation strategies for tigers in the future and to prioritize conservation investments to target unique gene pools. Reduction in tiger and prey poaching and in centivised-voluntary relocation of human settlements from core areas of tiger reserves have been the primary drivers for the improved tiger status in India. These schemes and activities need continuous resource allocation for ecosystem maintenance and restoration. The implementation of MSTrIPES, landscape scale tiger management plans inclusive of buffer and corridors, and use of green infrastructure for mitigating impacts of development especially on corridors, need to become the norm across India. Tigers are conservation dependent species, political will driven by public opinion to ensure proper resource allocation is essential for their continued survival.
  • Item
    Status of leopards in India 2018 : Summary report
    (Wildlife Institute of India, Dehradun, 2018) Jhala, Y.V.; Qureshi, Qamar; Yadav, S.P.
  • Item
    Revising Century old Abor Expedition: Arunachal Pradesh, India - Final report
    (Wildlife Institute of India, Dehradun, 2018) Das, Abhijit and others
    Thus, the Abor expedition is one of the most comprehensive biological, geographical and anthropological documentation ever conducted in India. This fine contribution was possible through a partnership between the scientific and defense departments of British India that yielded invaluable information from a remote part in Eastern Himalaya that is now recognized as a biodiversity hotspot. One of the important biogeographic interpretation made out of the observations is that the faunal and floral elements of Abor lands are rather similar to fauna of Assam, south of the Brahmaputra or even to that of Burma Myanmar, rather than to the fauna of Eastern Himalaya (Sikkim, Bhutan and Aka Hills). We revisited the route of the expedition to the extent possible and undertook a comprehensive and intensive survey of mammals, birds, reptiles, amphibians, butterflies, odonates and cicadas of the Abor landscape, paying special emphasis on threatened taxa. We also undertook an intensive collection of select lower taxa for voucher specimens, especially those of species potentially new to science. The entire expedition was exhaustively photo documented.