Technical Reports/Books/Manuals
Permanent URI for this communityhttp://192.168.202.180:4000/handle/123456789/7
Browse
84 results
Search Results
Item Conservation plan for biodiversity likely to be impacted by Greenfield Jewar International Airport, Gautam Budh Nagar, Uttar Pradesh, India(Wildlife Institute of India, Dehradun, 2021) WIIIndia has emerged as the fastest-growing major economy and is expected to be one of the top three economic powers in the world over the next 10-15 years. India, like other developing countries, is confronted with the dilemma of securing functionality of different ecosystems rang ing from natural to urban habitats alongside the priorities for expanding the transportation infrastructure. Among these, airports are increasing in numbers to cater to the increased demand air travel for effective connectivity across the country. With the growing needs for air travel from New Delhi's Indira Gandhi International (IGI) Airport and visualizing its unsustainability in meeting high traffic demand in the future based on the projection, the Government of India has recently initiated a project to build a new airport called "Greenfield Airport" at Jewar, Gautam Budh Nagar, Uttar Pradesh (U.P.). The proposed airport covering an area of 1334 ha is within New Delhi-National Capital Region (NCR). This would facilitate air travel from the region's entire National Capital Territory (NCT) of Delhi, 13 districts of the State of Haryana, eight districts of the State of Uttar Pradesh, and two districts of the State of Rajasthan (Anonymous 2019). With this development and very close proximity to the national capital, it is expected to have several large infrastructure development projects in the landscape. For judicious planning, NCR Planning Board (NCRPB) was created in 1985 to plan the development of the region and to enact harmonized policies for the control of land use and development of infrastructure in the region to avoid any haphazard development of the region as well as conservation of natural resources (Anonymous 1985). The NCRPB's Regional Plan 2021 aims to promote economic grow1h and develop the entire NCR as a region of global excellence http://ncrpb.nic.in/regionalplan2021 .html). On the same lines, the NCRPB has also envisagedincreasing the ambit and has the vision to expand and develop further, for which it is working on a new Regional Plan 2041, which is slated to be, completed soon (http://ncrpb.nic.in). For Greenfield Jewar International Airport (GJIA), Yamuna Expressway Industrial Development Authority (YEIDA) was appointed as a nodal agency by the Government of Uttar Pradesh state to execute the land acquisition process and other activities about airport development on behalf of the Directorate of Civil Aviation, Government of U.P. The YEIDA has steered a Techno-economic feasibility study by PricewaterhouseCoopers Private Limited (PwC) and an EIA study by Greenclndia Consulting Private Limited. Based on these studies, YEIDA moved the proposal to the Expert Appraisal Committee (EAC) for obtaining "Environmental Clearance" and this was deliberated in the 42nd Meeting convened on 10-12 July 2019. To bridge the gaps between the development and conservation of natural resources, YEIDA was asked to conduct a study for the preparation of "Conservation Plan for Birds and Fauna" in consultation with the Wildlife Institute of India (WII) for further consideration. With the followup, a technical proposal titled "Conservation Plan for Biodiversity likely to be impacted by Greenfield Jewar International Airport, Gautam Budh Nagar, Uttar Pradesh" was submitted to YEIDA forconsideration and it was accepted. Subsequently, a Memorandum of Agreement (MoA) was signed between WII and YEIDA for a study of Phase-Ion 30th August 2019 at shradun, India. The scope of the proposed project was as follows: a. Identify the key sources of impacts and the nature of impacts (direct and indirect, long term and short term and irreversible impacts if any associated with the airport) that would help guide the preventive, ameliorative, and restorative strategies to be adopted in the conservation planning. b. Identify the significant biodiversity values represented by rare, endangered and threatened (RET) floral and faunal species belonging to major taxa (hefpetofauna, birds, and mammals) within the zone of influence of the project. 1-0-1' G c. Assess the vulnerability of habitats and landscape features within a 10 km radius to impacts during different phases of the airport development and the likely implications. d. Prepare a conservation plan for rare, endangered, and threatened (RET) faunal species that is based on preventive and restorative measures for impact mitigation. e. Propose the Phase-II plan (Ten Years) for the "Post-Development Monitoring" for the status of RET species. Consequently, the Wildlife Institute of India mobilized a team of researchers, which started collating desktop-based information on the conservation importance of the taxa and habitats (terrestrial and wetlands) available in the landscape surrounding the airport. We also obtained crucial data, information, and shapefile of the proposed airport from YEIDA. participatory approaches in conservation have played a pivotal role during the last four decades to fulfill human and ecological/environmental goals. Realizing this, we organized a day "Consultation Workshop" with the stakeholders and knowledge partners at Gautam Buddha University, Greater Naida, Uttar Pradesh on 1st February 2020. Around 32 participants attended the workshop from Non-Governmental Organization, Nongovernmental Individuals, and officials from the Forest Department, YEIDA,MoEFCC, and others. We shared and discussed our envisaged framework of the planning process forthe preparation of the "Biodiversity Conservation Plan" with the participants. Based on the valuable suggestions received, we finalized our framework and approaches for the preparation conservation plan. Landscape conservation planning for biodiversity requires the integration of natural wildlife habitats at different scales so as consider the dispersal capacity of various taxa. Based on collated information and suggestion received during the workshop, we prepared the final framework of our approach for the collection of field data for the preparation of the "Conservation Plan for Biodiversity" for the GJIA landscape. We also reviewed the areas of conservation importance at the landscape level around the GJIA site. The landscape falls under Upper-Gangetic Plain and is a part of the semi-arid biogeographic zone. Because of these mixed habitat features, the landscape is endowed with rich biodiversity because of numerous wetlands created along the river Yamuna and the presence of various Protected Areas lmportant Bird Areas (PAs/I BAs) such as Sultan pur National Park, Okhla Bird Sanctuary, Surajpur Bird Sanctuary, and Dhanauri wetland, etc. All these habitats are rich in bird faunal diversity (160 to 300 species) and for migratory birds. Additionally, it has a mosaic of scrub habitats within the agriculture landscape and is the home for two key species of conservation importance besides others such as Indian antelope or Blackbuck (Antilope cervicapra) which is Schedule I species of the Wildlife (Protection) Act 1972 and Sarus Crane (Grus antigone). The infrastructure development plan envisaged in the landscape by YEIDA may cause rapid urbanization and land-use changes and may leave its ecological footprint. Thus, it requires the "Cumulative Impact Assessment" (CIA). Therefore. we also consider other areas which may be critical for the biodiversity conservation of this landscape.Item Biodiversity assessment with emphasis on select faunal groups in the Hasdeo Arand Coal Field, Chhattisgarh(Wildlife Institute of India, Dehradun, 2021) WIIIn India, the coal reserves predominantly occur in the Gondwana sediments of the East Central region in the states of Odisha, Jharkhand, Chhattisgarh, Madhya Pradesh and parts of West Bengal. The Hasdeo - Arand coal fields comprising of Tara, Parsa, Parsa East & Kente Basan (PEKB), and Kente Extension (collectively known as HACF henceforth in the report) in Chhattisgarh is one of the identified coal-bearing areas. More than 80% of the HACF and the landscape surrounding it is forested. The coal blocks demarcated HACF and the landscape surrounding it mostly occur in the forests. The Ministry of Forests and Climate Change, Government of India under section 2 (ii) of Forest Conservation Act vide F.Bo.8-31/21 O-FC dated 6th July 2011 granted in-principle (Stage I) forest clearance for diversion of 1898.328 hectares of forest land in Parsa East and Kante Besan captive coal block (PEKB coal block) situated in Surguja Forest Division. This approval was given despite the FAC recommending to reject this proposal in FAC meeting dated 23rd June 2011. Subsequently, the Stage II final forest clearance was granted by Government of India vide MoEF&CC's letter no 8-31 /2010/FC dated 15th March 2012. Aggrieved by the clearance granted by the MoEF&CC, an appeal no 73 of 2012 (Sudiep Shrivastava Vs Union of India Ors) was filed in the Hon'ble National Green Tribunal (NGT) principal bench in Delhi. The Hon'ble NGT pronounced its judgement on 24th March, 2014 directing MoEF&CC to seek a fresh advisory from the FAC with emphasis on seeking answers to the following questions: (reproduced from the order) - (i) What type of flora and fauna in terms of bio-diversity and forest cover existed as on the date of the proposal in PEKB Coal Blocks in question. (ii) is/was the PEKB Coal Blocks habitat to endemic or endangered species of flora and fauna. (iii) Whether the migratory route/corridor of any wild animal particularly, elephant passes through the area in question and, if yes, its need. (iv) Whether the area of PEKB Block has that significant conservation/protection value so much so that the area cannot be compromised for coal mining with appropriate conservation/management strategies. (v) What is their opinion about opening the PEKB Coal Blocks for mining as per the sequential mining and reclamation method proposed as well as the efficacy of the translocation of the tree vis-a-vis the gestation period for regeneration of the flora (vi) What is their opinion about the Wildlife Management plan finally prescribed. (vii) What conditions and restriction do they propose on the mining in question, if they favour such mining? The judgement granted liberty to FAC to get expert opinion/specialized knowledge/advice from authoritative sources such as Indian Council of Forestry Research and Education (lCFRE), Dehradun or Wildlife Institute of India (WII). This judgement of the Hon'ble NGT and stage-I clearance granted for prospecting over 1745.883 hectares of forest land of Kente Extension coal block for exploration of coal reserves vide MoEF&CC letter No. F.No 8-46/2017 -FC dated 19th December 2017 impose a condition that a biodiversity assessment study for entire HACF would be conducted by the State Government of Chhattisgarh through ICFRE, Dehradun in consultation with the WII. The condition is reproduced for reference: "(ii) A biodiversity assessment study is to be conducted by the state government through ICFRE, Dehradun in consultation with the Wildlife Institute of India, Dehradun for the whole Hasdeo Arand coal field comprising of Tara, Parsa, Parsa East, kante to be funded by M/s Rajashthan Rajya Vidyut ll Page Utpadan Nigam Limited (RRVUNL). The study is to be awarded by the state Government by associating the Indian Council of Forestry Research and Education (ICFRE) Dehradun or Wildlife Institute of India (WII) and integrated wildlife management plan (IWMP) will be prepared and conservation area will be identified and mitigation measures will be recommended by the expert committee. The cost of the study and cost of implementation of the recommendations shall be borne by the Mis Rajasthan Rajya Vidyut Utpadan Nigam Limited (RRVUNL). The report will be submitted within two years". The main objectives of the biodiversity assessment that ICFRE and WII would jointly focus include: a. Provide details of flora & fauna with special reference to endemic threatened species reported from the study area b. Describe the habitat for such endemic/threatened species and identify likely threats for conservation c. Details of migratory route corridor critical areas for wildlife species especially umbrella species like elephants and tigers d. Document socio-economic values of the affected area vis-a-vis biodiversity values e. Consult with forest department officials, local communities in HACF and f. Identification of conservation areas within HACF Consequently, the biodiversity assessment focusing on faunal aspects of HACF was carried out by WII with ICFRE as the nodal agency for the overall assessment. The biodiversity assessment focusing on faunal aspects carried out by WII in the HACF and the landscape surrounding it using on-foot sign surveys and camera trap surveys (for mammalian baselineassessment); transect surveys (for avifaunal baseline assessment), ad libitum sampling for Herpetofaunain conjunction with secondary data and information obtained from Chhattisgarh Forest Department andthe village interview surveys established the ecological baseline information on faunal biodiversity. It isenvisaged in the ToR that impact assessment would be done for the Hasdeo-Arand coal fieldcomprising of Parsa, Parsa East & Kente Basan (PEKB), Tara Central and Kente Extension coal blocks. Of the four coal blocks mentioned, only PEKB is currently operational. Therefore, Wil's impact assessment (Chapter-7), mitigation of impacts (Chapter-S) and preparation of biodiversity conservation and management plan (Chapter-g) focuses on PEKB coal block. Nevertheless, landscape-level suggestions for managing wildlife in HACF and the landscape surrounding it have been detailed in the report. Opencast mining and associated developmental activities in forested habitats could potentially affect a variety of taxonomic groups. Nevertheless, measurement of every aspect of biodiversity in forested landscapes that span several hundred squares kilometers of mosaic habitats in a short period of time is seldom easy. In order to overcome this constraint, short-cut approaches that focus on monitoring large mammal populations, which serve as keystone, flagship or umbrella species have been advocated. As biodiversity assessment, impact assessment and mitigation strategies are to be studied at a landscape level, this study emphasized specially on the "umbrella species concept". The umbrella species concept is a globally accepted concept wherein conservation efforts targeted for a well -chosen representative species can confer a protective umbrella to numerous other co-occurring species in the landscape. Asian elephant and tigers serve as umbrella species in the tropical forested landscapes. Both tigers and elephants are long ranging and have specific ecological needs. Understanding the ecological requirements of these species can augur well for all other species found in the landscape.The results of the assessment show that HACF and the landscape surrounding it is rich in fauna. The HACF and landscape surrounding it supports over 25 species of mammals. The mammals of the Order Chiroptera and Rodentia (except for Ratufa indica that is included in the list) were not surveyed as that would require a long term duration and thus, the number of species reported in the assessment is best considered minimal. Among the mammal species recorded the Hasdeo - Arand area, nine species are listed in the Schedule - I, which are accorded the highest level of legal protection under the Wildlife (Protection) Act, 1972. Mammalian species diversity includes threatened large carnivores like common leopard, Indian grey wolf, striped hyena, sloth bear, and others that appears to be widely distributed as evidenced by camera trap captures as well as detections during sign surveys. The Hasdeo Arand area is spread across three districts, viz. Surguja, Surajpur and Korba. The Korba district has two Forest Divisions (FD) viz. Korba FD and Katghora FD. The Korba FD had reported occurrence of tigers. The habitat connectivity between HACF along with the landscape surrounding it, and Achanakmar TR, Boramdeo WS and Kanha TR is strong, and may support sporadic tiger dispersal. Elephant occurrence was reported by the Forest Department in 148 out of 647 compartments in HACF and the landscape surrounding it with an area of 363.98 km2 during the period 2018 to 2020. The elephant occurrence is not restricted to any particular area and is spread across the landscape (Map- 21 , page 56). A conservative estimate of about 40 to 50 elephants could use different parts of the landscape at different times of the year. Human-elephant conflict in the form of crop losses and occasional property damage is widespread too. Elephant conservation and management in the landscape hinges on effective conflict resolution strategies by actively engaging with local communities and at the same time enriching the habitat condition for elephants. Chhattisgarh human-elephant conflict situation is a paradox with a relatively low number of elephants «300, which is <1 % of India's wild elephant population) but high levels of HEC with over 60 human lives are lost every year due to conflict (>15% of the reported human deaths due to HEC). In addition to loss of human lives, crop loss and damage to property due to HEC are severe. There is continuous dispersal of elephant herds from the neighbouring states of Jharkhand and Odisha. The study carried out by WII in collaboration with Chhattisgarh Forest Department from the year 2017 onwards clearly highlight that elephants have large home ranges. The forests that elephants currently occur are highly fragmented and degraded due to incompatible land-use. Infrastructure development and mining are further fragmenting the habitats making conflict mitigation a huge challenge. In fragmented habitats conventional fencing approaches minimally work due to high perimeter to area ratio of habitats. The EC region harbours less than 1/10th « 3000) of country's elephants, but loses over 40% (over 200HEC-related deaths) of reported 500 HEC-related human fatalities in the country. The HEC-related human fatalities reported in the region are highly disproportionate to its elephant population in the country. The increasing levels of HEC have resulted in considerable public resentment against the management and elephant conservation as a whole. HEC resolution is challenging in EC region due to fragmentation, loss and degradation of intact elephant habitats. In highly fragmented areas, the elephant home ranges tend to be large as small, degraded forest patches cannot sustain herds. It is observed that home range size is a function of habitat quality - in areas that support good intact habitats, the elephant home ranges are relatively small (eg. Rajaji, Mudumalai etc). However, in fragmented areas, elephant home ranges are typically large. The elephant herds are generally interlinked and home ranges spread over two or more states. One of the main reasons as to why elephants start dispersing into human-use areas is the threat to habitat. In particular, threat to elephant home ranges. While threat to habitat can be identified and sometimes even addressed, threats within individual home ranges of elephants are hard to evaluate and hence, difficult to mitigate. The latter threats are more insidious and lasting. Major disturbances to habitats such as mining not only cause habitat loss and fragmentation (as understood generally) but can affect individual herd's home ranges. Such disturbances can lead to abandonment of habitats as threats to home ranges have a threshold limits. The effect of mining on elephant habitat may not reflect in the same habitat, but could be a silent trigger for HEC in some other area within the landscape. In general, one of the reasons for HEC being disproportionately high in EC region is the elephant dispersal from forest habitats through fragmented human use areas. This large scale elephant dispersal out of intact forests coincide with commencement of large-scale mining projects and associate infrastructure developments in the EC region, particularly in the states of Odisha and Jharkhand. During the biodiversity assessment, a total of 92 species of birds were recorded with in HACF and the landscape surrounding it. The list is best considered minimal. As per the ebird (https:/Iebird.org/) a total of 406 species of birds have been reported in the three districts of Surguja, Surajpur, and Korba - the districts in which the HACF and the landscape surrounding it occurs. It is quite likely that many of the species of birds reported in HACF either use or pass through it. However, it may be noted that HACF and the landscape surrounding it just supports - 12.4% of the combined area (- 15,110 km2) of the three districts. Local communities in HACF and the landscape surrounding it are predominantly tribal. The livelihood of local communities is closely dependent on forest resources. The NTFP collection (of four major commodities) contribute nearly 46% of the monthly income reported by the households. This does not include the fuelwood, fodder, medicinal plants, water and other resources that local communities collect from the forests. If such resources are pooled as income to local communities, it may be conservatively mentioned that over 60 to 70% of the total annual income of local communities come from forest-based resources. Thus, forest dependence substantially adds to income security of local communities. In addition to financial gains, forest produce collection is critical for medicine, food and other health benefits thereby providing food security and overall well-being. The local communities have reported coming across a variety of wildlife in and around their settlements. A few respondents (n = 4) have even sighted tiger in and around their settlements. They expressed concern about human-wildlife conflict involving crop losses, loss of livestock, loss of property and occasional loss of human lives. Garnering the support of local communities for wildlife conservation would be conditional on addressing human-wildlife conflict on a real-time manner. In general, the local communities are apprehensive of mining, which is perceived as a threat to livelihood as the land as well as forests are lost in the process of mining. The community respondents interviewed expressed concern and were anxious over loss of forests (and consequently material base for livelihood) and loss of land due to mining. The loss of forests due to mining is perceived as a direct threat to livelihood by the local communities. The local communities express positivity towards forest conservation and at the same-time insist on timely resolution of human-wildlife conflicts. Conservation initiatives in the landscape need to be participative and actively involve local communities. Considering this, as part of the biodiversity assessment, and as envisaged in the ToR of the study, the impact of the ongoing mine of PEKB in the HACF has been assessed. It may be noted that the impact assessment carried out by WII for PEKB coal block is not a true Environmental Impact Assessment (EIA) as PEKB coal block is already operational covering nearly 1000 hectares of the 1898 hectares cleared for mining. Coal extraction is already being done and is in operational stage. Therefore, visualizing the true picture of the likely impacts on the physical environment as well as the wildlife the area supports is not possible. Nevertheless, selected impacts of the physical environment that are likely to impact directly on select biodiversity and social values in the PEKB operation have been identified. For this purpose, the faunal biodiversity list provided by Indian Institute of Forest Management (IIFM) as part of the EIA for PEKB (IIFM, 2009) was used as the baseline for evaluating the impacts. In general, the impact assessment methods argue that the foremost step in impact appraisal must consider and identify project actions that are likely to bring significant changes in the project environment. Such impacts include: physical, biological and social environments. The potential impacts due to ongoing mining operations of PEKB on physical environment, fauna and local communities have been elaborated. The possible mitigation strategies for addressing the impacts of PEKB include progressive restoration, development of grass and leaf fodder plots, livelihood options to increase income sources, bio-filter check dams in the streams of the project sites, green-belt development - phytoremediation, development of "Green Gallery Belt", eco-restoration of waste dump, construction of underpasses, construction of pipe and box culverts as safe passages in the roads as mitigation strategies for reducing road mortality. The detailed mitigation strategies have been provided. The biodiversity conservation and management for PEKB focusing on species groups, threatened plant & animals, resource base of local communities along with the social values have been given. The Human-Elephant conflict mitigation strategies in the HACF and surrounding landscape should include the following: 1. Maintaining the ecological integrity of intact natural habitats without fragmentation and degradation is critical. Any additional mining leading to loss of habitat would escalate HEC unpredictably high 2. Formation of landscape-level Rapid Response Teams by engaging village youth with adequate remuneration is essential. The RRT members should be adequately trained in elephant behaviour and conflict management methods. 3. Judicious use of mobile barriers in select areas of HACF and surrounding landscape where HEC is high need to be experimented with active community participation. 4. Ex gratia payment for crop, property and other losses due to elephants have adequate and timely. The overall process of filing and obtaining compensation by villages should be made smooth and transparent 5. Habitat enrichment by improving surface water availability in carefully selected locations, development of grasslands and fodder base based on the list of plants suggested in the report and protection of critical micro-habitats such as riparian tracts are critical (Refer Table 9.23). 6. Human-elephant conflict is dynamic in nature. The above mentioned mitigation measures need to be experimented in smaller areas and based on the evaluation of efficacy can be scaled up. As certain portions of the PEKB block has already been opened for mining, the miningoperation may only be permitted in the already operational mine of the block. The other areasin HACF and landscape surrounding it should be declared as Uno-go areas" and no mining should be carried out considering the irreplaceable, rich biodiversity and socio cultural values. The HACF and the landscape surrounding it support rich biodiversity with a multitude of mammalianspecies including elephants and also harbours forest-dependent communities. Therefore, sustaining the forest cover and maintaining its overall ecological integrity is essential. It is pertinent that Chhattisgarh Forest Department with due consultation and involvement of local communities identify areas within HACF and the landscape surrounding it for declaration as Conservation Reserve (CR) under the Wildlife (Protection) Act, 1972. Under the ambit of a CR, habitat improvement activities such as restoration of grasslands and restoration of degraded forests; improving surface water availability in relatively drier tracts during summer, regulating forest fires, and improving overall protection can benefit biodiversity. 2 The response pertaining to this query shall be provided by ICFRE as it deals with nora and efficacy of translocation of the tree vis-a-vis the gestation period for regeneration of the nora The coal mines along with the associated infrastructure development would result in loss and fragmentation of habitat. Mitigating such effects on wildlife, particularly the animals with large home ranges such as elephants is seldom possible. The human-elephant conflict in the state is already acute and has been escalating with huge social and economic costs on the marginal, indigenous local communities. Any further threat to elephants' intact habitats in this landscape could potentially deflect human-elephant conflict into other newer areas in the state, where conflict mitigation would be impossible for the state to manage. Opening up of coal blocks for minging in the HACF would compromise the imperatives of biodiversity conservation and livelihood of forest-dependent local. Even the effects of the operational PEKB mine need to be tactfully mitigated too, wherever possible. The assessment findings are in conformity with the study undertaken jointly by the Ministry of Coal and Ministry of Environment, Forests and Climate Change across nine coal fields across the country during the year 2009, where it was concluded that the Hasdeo-Arand coal fields in north-central Chhattisgarh is identified as a 'no-go' area. The findings of this joint study of 2009 culminated into an important policy decision towards facilitating an objective, transparent and informed decision regarding forest lands being diverted for coal mining projects. However, the findings of the study were set aside during 2011 . Considering the need to reconcile country's developmental needs with conservation priorities, the recommendations of the 2009 joint study holds substantial importance for ecologically balanced sustainable growth.Item Technical manual for Management Effectiveness Evaluation (MEE) of 210 National Parks and Wildlife Sanctuaries in India during 2020-21(Wildlife Institute of India, Dehradun, 2021) Mohan, D.; Talukdar, G.H.; Sen, M.; Ansari, N.A.Item Transportation essentials for Asian elephants : technical manual(Wildlife Institute of India, Dehradun and Uttarakhand Forest Department, 2021) WIITransportation of both captive and wild elephants is a necessity For a variety of management reasons. However, unplanned and poorly executed transportation can cause enormous stress to the elephants, jeopardize their safety and compromise their well-being. Such operations can also pose considerable risks to the Frontline staff, elephant handlers, veterinarians and other support personnel involved. In order to minimize risks to both elephants and the personnel involved, meticulous planning and consideration of a number of critical points are essential. Proper justification of the need to transport elephants is crucial. Equally critical is the need to evaluate availability of trained manpower with adequate experience and other essential resources to safely transport elephants. Although elephant transportation is not uncommon, precautionary measures to be considered and best practices to be Followed to minimize the risks to both the elephants and the personnel involved are not readily accessible For the field managers. The Frontline managers at the helm of the operations are often handicapped when such ready references are not available. Acknowledging this lacuna. this document aims at aiding managers dealing with captive and wild elephants to be better prepared to safely transport elephants. The document IS intended For veterinarians, wildlife biologists, and field officers working in the field. It details the preparatory essentials For elephant transportation, aspects of loading and restraining elephants, safety considerations, vehicle preparation For the travel and veterinary considerations. Considering that there are Rapid Response Teams IRRTs) at most conflict-prone Forest jurisdictions, this manual hopes to aid the RRT to be prepared to handle elephants during conflict situations.Item Long-term perspective plan: mitigating human-elephant conflict in Rajaji Landscape, Uttarakhand(Wildlife Institute of India, Dehradun, 2022) WII-UKFD1. The Rajaji Landscape comprising of the Rajaji Tiger Reserve, and the adjoining Forest Divisions of Dehradun, Haridwar and Lansdowne in the state of Uttarakhand (henceforth, The Rajaji landscape) supports a population of about 550 elephants (Elephas maximus) as estimated by the Uttarakhand Forest Department during 201 5. Thus, the Raj aji landscape holds nearly 31% of the elephant population occurring in Uttarakhand. 2. The elephant population in Uttarakhand including that of the Rajaji landscape has been relatively stable and even witnessed marginal growth. However, with growing human population and associated impacts on elephant habitats such as increased resource demands and rapid expansion of physical infrastructure, there has been an increase in the human-elephant conflict (henceforth, HEC). Early detection of the problem and addressing its root causes would be an important conflict resolution strategy. 3. As part of the preemptive conflict management strategy in the Rajaji in landscape, a perspective plan has been envisaged. The overarching objective of the perspective plan is to synthesize available information on the existing HEC in the Rajaji landscape, draw broad inferences on the trends and patterns, and deliberate on different approaches that are appropriate for mitigating HEC. As HEC mitigation strategies are both short- and long -term, the perspective plan is drafted for a reasonably long period of 10 years spanning 2023 to 2033 . 4. The drafting of the perspective plan did not involve any primary background research. However, the plan was prepared using information available in the literature; existing data on elephant movement, home range and conflict collected as part of the WII -UKFD collaborative project (Nigam et al. 2022), and data obtained from the Project Elephant. Further to this, extensive field visits were carried out to corroborate on the important findings obtained from other studies. Furthermore, the plan also draws heavily on other policy documents as elaborated in the report. 5. As elucidated by the first steering committee report of the Project Elephant (Gajatame, 1993), conservation and management of elephants in the Rajaji landscape calls for harboring "viable elephant populations" Perspective Plan to Manage Human-Elephant Conflict in Raja); Landscape (2023 - 2033) in "viable elephant habitats". Often, human-elephant conflict and elephant habitat conditions are intricately linked. In areas where elephant habitat quality is optimal, intensity of human-elephant conflict in the landscape would be comparatively low. Considering this, the perspective plan places emphasis on improving habitat conditions for elephants. 6. It has been observed that owing to adequate protection and voluntary relocation of Van Gujjars from the National Park areas, it is certain that habitat quality from wild life point of view had improved in select areas within Rajaji National Park. However, the highly productive critical ecotone habitats (located in the eco-tone of Bhabar and Terai tracts) in Shyampur and Chidiyapur Forest Ranges of Haridwar Forest Division have suffered major habitat degradation owing to Gujjar settlement in the area and corresponding resource extraction pressures. 7. While the forest cover did not change much in Rajaji Landscape during the period 1985 to 2022, the land-use outside forests have changed substantially. The urban built-up area in particular has mushroomed all around with long-term implications for elephant movement, dispersal and HEC management as well. Unlike in rural areas, Managing HEC in urban areas is far more challenging due to crowd factor. The potential of invoking provisions of Ecologically Sensitive Zone area under Environmental Protection Act, 1986 to disallow urban expansion close to forest boundary need to be explored. 8. Critical corridors like the Chilla - Motichur remained non-functional for a long period. This had resulted in isolation of elephant populations on either side of river Ganga with long-term effects on dispersal, migration and demography of elephants. Nevertheless, huge efforts were invested by the Uttarakhand Forest Department due to which the Chilla - Motichur corridor has been mostly restored. The other critical corridors like the Motichur - Gohri corridor along the Song River would require renewed focus so that this vital corridor can be recovered on time. The Rajaji landscape had also lost a corridor that connected Ramgarh range of the National Park with the Lacchiwala range of the Dehradun Forest Division across Susua river near Dudhli. This was lost largely due to lack of focus as the corridor was not recognized. 9. In the Rajaji Landscape, the natural grasslands along the river Ganga had either been lost (due to human occupation) or degraded. While it would be impossible to recover the once expansive and productive 2 Perspective Plan to Manage Human- elephant Conflict in Rajaji Landscape (2023 - 2033) grasslands along Ganga, it certainly is critical to restore Chilla, Kunaon, and Dassowala grasslands for elephants. Riverine grasslands were important dry-season habitats for elephants in the past. Recovering critical grasslands and restoring their quality would enhance the inherent carrying capacity of Rajaji Landscape to support elephants. Addressing human-elephant conflict in Rajaji Landscape would also be dependent on recovering and restoring habitat in Shyampur and Chidiyapur Forest Ranges. 10. Linear infrastructure expansion including upgradation of existing village roads and district roads in addition to the Highways and concurrent with rapid increase in the vehicular traffic along these roads pose a major long-term threat of habitat fragmentation. Implementing ecofriendly green infrastructure by ensuring habitat permeability would be critical in the Rajaji Landscape to prevent isolation of elephant populations. Isolated elephant populations are predisposed to cause high levels of human-elephant conflict. 11. Physical barriers that separate elephants and people along the forest interface would be crucial to achieve co-existence in the landscape. Without physical barriers at strategic locations, addressing elephant conflict would be difficult. The barriers currently built by the Forest Department along the forest-agriculture interface pose no threat to habitat connectivity. Limitations and opportunities of implementing physical barriers have been elaborated in the report 12. There are 77 places of religious worship inside Rajaji Landscape that draws over 10000 pilgrims every year. Places of religious worship are located in 18 (58%) ranges of 5 (83%) Forest Divis ions in the Rajaji Landscape. While religious tourism has the potential to reinforce cultural underpinnings of nature conservation as practiced in India besides enabling public appreciation of nature, unregulated pilgrimage in wildlife habitats can pose a challenge to elephant conservation as elephants can abandon habitats with chronic biotic pressure resulting in surfacing of human-elephant conflict. Measures to minimize the threats posed by places of religious worship are deliberated. 13. Further, solutions for the sites used for Kumbh mela for festival related activities were also used extensively by elephants as detailed in the report. Hitherto, the temple committees and other religious institutions have not proactively engaged with the forest department in regulating pilgrims and maintaining the integrity of local ecology. Forest Perspective Plan co Manage Human-Elephant Conflict in Rajaji Landscape (2023 - 2033) department with lean headcount of staff cannot be expected to regulate pilgrims and their activities. Given the huge biotic imprint of places of religious workshop on wildlife habitats in Rajaji Landscape, the perspective plan favors vesting substantial responsibility and sharing of resources by committees of the religious worship to maintain the integrity of forests as envisaged by NTCA guidelines issued during 2012. 14. The indiscriminate use of forest roads and trails by tourists visiting places of religious worship poses a huge risk of fatal encounters with wildlife. The situation calls for regulating/restricting use of forest roads and trails by tourists. There are also instances of forest trails being used as roads by clearing vegetation, which need to be curtailed. 15. Finally, the perspective plan favors active dialogue, and engagement with the communities of the Van Gujjars that live alongside elephant habitats. Partnering with local communities and involving them in implementing conflict mitigation strategies would improve the efficacy of the current efforts of Uttarakhand Forest Department.Item Capacity building initiative on the dispersal and ranging patterns of elephants for effective management of human-elephant interactions(Wildlife Institute of India, Dehradun, 2022) Nigam, P.; Pandav, B.; Mondol, S.; Lakshmiarayanan, N.; Kumar, A.; Nandwanshi, V.B.; Das, J.; Biswas, S.; Udhayaraj, A.D.; Vishwakarma, R.; Habib, B.; Miachieo, K.; Narasingh Rao, P.V.Wild Asian elephant (Elephas maximus) populations are distributed in four major regions namely North West, North-East, East-Central and Southern regional meta-populations across India. Amongst them, the East-central regional population spread across the States of Odisha, Jharkhand, southern West Bengal, Chhattisgarh, and lately in Madhya Pradesh suffers disproportionately high levels of human elephant conflict. Among the myriad challenges facing management of human-elephant conflict in the region, elephant range expansion into new areas is overriding. One such range expansion that resulted in acute human-elephant conflict is being witnessed in the State of Chhattisgarh. Although northern Chhattisgarh was historically an elephant range, elephants reportedly disappeared during the period 1920 to late 1980s. While episodes of sporadic elephant occurrence in Chhattisgarh was reported during the period 1988- 1993, contemporary range expansion and concomitant human-elephant conflict began from the year 2000, and has accelerated during the last one decade. Faced with an enormous challenge of managing human-elephant conflict that is spatiotemporally dynamic unlike that of other elephant range States, constrained by limited Institutional capacities to assess and deal with the issue. Chhattisgarh Forest Department has been trying diversity its conflict mitigation strategies. Recognizing the need to objectively evaluate human-elephant conflict situation in the State, during the year 2017 Chhattisgarh Forest Department invited Wildlife Institute of India to conduct ecological research on elephants in Chhattisgarh with a three-year budget outlay. The project was a collaborative effort between Chhattisgarh Forest Department and WII. Considering the scope of the project, the project duration was further extended and eventually, the project lasted for the period July 2017 to March 2022. Being the final project report, the activities carried out as part of the project is summarized as under. Distribution and Demography In Chhattisgarh, the elephant distribution during the period 2012 to 2017 was reported from 16 Forest Divisions and four Protected Areas in the north and north-central regions of the state. The elephant population, as enumerated by Chhattisgarh Forest Department during 2021 , ranged from 250 to 300. The adult sex ratio recorded during the study was 1: 4.5. About 44% of the female segment of the population comprised of adults. Chhattisgarh elephant population is presently contiguous with other elephant populations in the neighboring states i.e., Madhya Pradesh, Jharkhand and in Odisha occurring as a meta-population 1 and thus cannot be considered as an isolated population. However, within Chhattisgarh, the population is relatively small and it occurs scattered over a large area as small and disjunctive groups facing a perpetual risk of getting isolated by ongoing linear infrastructure and other associated developmental activities in the State. If such groups get isolated, then they will not be viable in the long run. 1 Meta-population: Population of small populations that are connected through dispersals 1 O. ~ . -~ 1 -WU.d.U.fe .In.s-titu-te. o.f .In.di a Home Range, Movement Patterns & Dispersal, and Habitat Selection by Elephants During the period 2018-2022, WII-CGFD collaborative effort resulted in 10 elephant radio collaring in Chhattisgarh. The resultant effort provided 3106 elephant days of tracking information. Each of the radiocollared elephants provided an average of 310.6 (± 273) days of tracking data. As on 31 51 March 2022 when WII-CGFD collaborative project ended, two of the collared elephants (SD - Sehradev and MT - Maitri) were having functional collars. The estimated average home range (95% minimum convex polygon) of elephants in Chhattisgarh was 3172.8 km2 (± 2002.2 km2, Range: 462.3 - 6969.7 km2). The 95% kernel density home ranges of elephants were much lower averaging 512.3 km2 (± 235.3 km2, Range: 126.5 - 748.9 km2). The elephant home ranges were not wholly well defined, and marked by inter-annual shifts caused by exploratory behaviour. The elephant home ranges were relatively large. The dry season home ranges were significantly lower than monsoon and winter ranges. However, dry season home ranges of elephants are larger. The present study indicates that habitat quality in some of the forest patches - particularly those that are large and contiguous with minimal of human interference can potentially support elephants in the landscape. Thus, dry season ranges of elephants could serve as a surrogate for habitat quality. Monthly variations in home ranges were significant, and best explained by idiosyncrasies of individual elephants. Among the forest types open, moderately dense and very dense forests classified by Forest Survey of India based on crown densities, elephants selected open forests, that were predominantly juxtaposed with human-use areas. Although the crown density was low, the patches of open forests support dense stands of Sal (Shorea robusta) coppice with rank undergrowth offering adequate cover for elephants. Elephant habitat selection of these open forest patches appears to be influenced by potential foraging opportunities in human-use areas, and further facilitated by low inter-patch distance. Genetic Structure of Elephants Using 258 genetic samples collected from 9 Forest Divisions, elephant genetic structure in northern Chhattisgarh was evaluated. Analysis indicates that at least two different elephant lineages occur in Chhattisgarh. This implies that elephants occurring in Chhattisgarh have possibly come from different areas. Within the two different lineages, high relatedness amongst the individuals was observed corroborating with the general social structure of Asian elephant clans where individuals are mostly related. Crop Losses and Human Fatalities due to Elephants Crop losses caused by elephants were acute and widespread in Chhattisgarh. To draw an analogy, Karnataka's ex gratia payment towards crop losses by elephants during the period 2015-2020 was comparable with Chhattisgarh, although the former's elephant population is 93% more than the latter. The landscape-level assessment covering the whole of northern Chhattisgarh, and fine-scale assessment covering select areas in Surguja circle identified correlates of crop losses at both spatial scales. Elephant-related human deaths were widespread in the state. However, nearly 70% of incidences occurred in areas of high intensity of habitat-use by elephants. The human fatalities due to elephants were both temporally and spatially auto-correlated. 2Item Suggested measured to mitigate elephant and other wildlife train collisions on vulnerable railway stretches in India(MoEFCC and Wildlife Institute of India, Dehradun, 2025) PE-MoEFCC-WIIThe Indian railways serves as a vital transportation lifeline for the country, facilitating the movement of people and goods nationwide. However its extensive network has also contributed to major threats to Asian elephants and other wildlife in Certain regions. Additionally railway infrastructure can act as a barrier restricting wildlife movement and leading to habitat fragmentation. To address the issue of wildlife fatalities resulting from train collision, the MoEFCC with the WII and the Ministry of railways had initially identified 110 sensitive railway stretches across the elephant distribution range in India with 17 additional sensitive stretches identified in two Indian tiger range states.Item Supplementation of Gaur in Bandhavgarh Tiger Reserve, Madhya Pradesh(Wildlife Institute of India, Dehradun, 2025) Nigam, Parag; Gorati, A.K.; Vishwakarma, R.; Bhandari, B.; Habib, Bilal; Mondol, Samrat; Nath, A.; Sen, S.; Krishnamoorthy, K.; Sahay, A.; Nanda, R.; Tiwari, V.R.Reintroduction and supplementation programs have been implemented worldwide to improve the conservation status of wildlife that have experienced a significant decline due to overexploitation, habitat destruction and fragmentation. Genetic drift and inbreeding are the two processes particularly relevant in reintroduction efforts that lead to reduced fitness, deceased survival rates and increased susceptibility to diseases. The MPFD in collaboration with WII has initiated a three year project (2024-2027) titled : Population management strategies for gaur (Bos gaurus gaurus) conservation: supplementation of gaur in Bandhavgarh tiger reserve, Madhya pradesh''. This project aims to ensure the long term viability of the species by enhancing its genetic diversity. To facilitate the smooth execution of field operations, an action plan was developed and released during the Inception cum planning workshop held at Bandhavgarh Tiger Reserve. Conservation translocation have become an important tool in recovering the threatened and locally extinct population. Species translocation are increasing all around the globe to reverse biodiversity loss and restore ecosystem functions. Reintroductions require careful planning as small population size experience inbreeding depression, which leads to decreased fitness and demographic stochasticity. Although genetic diversity is not directly linked to species extirpation, low gene pool results in low species recovery. To enhance the gene pool and long term viability of the restored species, supplementations are crucial, especially in small and isolated populations. The addition of new individuals amplify the gene flow in reintroduced species.Item Tracking the nearshore and migratory movements of Olive ridley sea turtles occurring in the Coastal waters of Maharashtra(Wildlife Institute of India, Dehradun, 2023) Mudliar, M.M.; Kumar, R.S.In a first, a satellite tracking study of solitary nesting olive ridley sea turtles was taken up on the west coast of India during 2022-2023 along the Maharashtra coast. Seven olive ridley sea turtles were captured (five in 2022 and two in 2023) and were tagged with Argos satellite transmitters (model-K2G 576E) manufactured by Lotek Wireless Inc. (New Zealand). The tags were attached to the turtle's carapace using a 2-part epoxy-resin adhesive and further secured using fiberglass tape. The tags were programmed to remain on for 24 hours and a transmission limit of 577 messages per day was fixed for each tag. Five turtles tagged in 2022 were tracked for an average duration of 138 days (3 to 173 days), while the two turtles tagged in February 2023 were tracked for 212 and 213 days. rhe turtfe locations received from the tags were checked for erroneous data and filtered accordingly. Following this, a continuous-time State-Space Model (SSM) was used for track correction and modelling. For every 6-hour interval, a location from the modelled track was extracted for the separate analysis of breeding period. Further, for the analysis of the post-nesting period, the locations were extracted for every 24-hour interval. A movement persistence model was then used to determine the behavioural state of the turtles based on changes in speed and direction of travel between subsequent time steps. This resulted in a Movement Persistence Index (MPI) for every time step that ranged between 0 and 1, where higher values indicated directed movements associated with migration and lower values indicated a slow-moving phase associated with stop-over. The high-use areas of tagged turtles during the nesting period were determined using Kernel Density Estimates (KDE). Further, the diving data obtained for each tagged turtle was summarised for dive depth and duration, and daily time spent on the surface. The diving behaviour was also compared for the turtles in the continental shelf waters and in the open ocean. During the nesting period, the tagged turtles resided in the nearshore waters for a period ranging from 22 to 41 days and, on average, remained 10 km from the coast. During this period, the high use area (50% KDE) determined for the tagged turtles ranged from 142 sq. km to 735 sq. km and fell within the 30 m depth contour. The high-use areas were primarily associated with turtle-nesting beaches adjoining river mouths in the region. Two of the tagged turtles from the 2022 season, Prathama and Saavni, were observed to nest again after 34 and 31 days, respectively, suggesting that the solitary nesting turtles lay multiple clutches in a season. The average time spent at the surface per day (time the tags remained dry) during this period was 50 minutes. This suggests that turtles possibly spent most of their time resting underwater which was also evident from the long U-shaped dives recorded during this phase. The tagged turtles started on their post-nesting movements from late February to mid-March. In the case of three turtles, their initial movements were oriented to the North while the others iii headed South. The northernmost location of the tagged turtles came 95 km off the coast of Gujarat, where the turtle named Prathama resided for 31 days, and then began moving South. The post-nesting movements of the tagged turtles in the following months had clear directionality and were not nomadic. The tagged turtles were observed to have a median speed of 1.1 km/h, and the speed increased from 0.6 km/h (range: 0.3-0.9 km/hr) to 1.32 km/h (range: 0.6 -1.79 km/h) when they moved from the continental shelf to open waters. The turtles were observed to have stop-overs in areas off the Gujarat coast, the Karnataka coast, the waters。仟 northeastern Sri Lanka, and the open waters of the Bay of Bengal. At the time of the last tracking location, the displacement distance of the tagged turtles was 190 - 2338 km from their nesting beach and they had travelled 1015-5267 km in 80-213 days. the turtles were observed to dive to an average depth of 15.7 ± 8.2m during the breeding phase and 61.43 ± 36 m during the post-breeding phase. During these dives, the turtles stayed underwater for an average duration of 27.2115 and 31.9 ±18 minutes in the breeding and post-breeding phase, respectively. An increase in V-shaped dives (exploration dives) was observed when turtles moved into deeper waters. The turtles performed shallower dives at night in open waters, while no such difference was observed when the turtles were on the continental shelf. A gradual increase in daily surface duration was observed during the post-breeding phase for turtles. At the same time, it was observed that the deepest dive performed in a given day gradually increased, and turtles that moved into the shelf break and open ocean habitat performed exceptionally deeper dives sometimes more than 400 meters. A general southward movement and reduction in MPI in the continental shelf break of the Karnataka coast was observed for most turtles starting from the month of May. This area falls in the well-known Malabar upwelling zone and appears to be an important foraging area for the west coast olive ridley population. Being first of its kind for west coast of India, this tracking study has been successful in creating awareness about olive ridley sea turtles through extensive media coverage on tagging and movement updates. Even with a small number of tagged turtles, it also provided crucial information on the movement and diving ecology of this lesser-studied population. Most importantly, the patterns of movement from this study suggests that turtles nesting on the Maharashtra coast comprise two foraging populations. Firstly, those that are resident to the Arabian Sea and the others from the Sri Lankan waters or from the Bay of Bengal. Further tracking efforts are recommended where the turtles are tagged early in the nesting season to understand their inter-rookery movements and find nesting frequencies per season. More tracking efforts from Maharashtra and elsewhere along the West coast of India are suggested to be taken up. This will help understand how the turtles from different nesting areas move and forage. Moreover, this will help identify the overlap between fishing zones and critical breeding and foraging areas along the West Coast to better manage and conserve the species through appropriate interventions.Item Demographic outcomes of diverse behavioural strategies assessed in resident and migratory population of black kites Milvus migrans Phase VI(Wildlife Institute of India, Dehradun, 2024) Kumar, Nishant; Jhala, Y.V.; Qureshi, Q.The Black Kite, an opportunist, facultative scavenger in the South Asian urban ecosystems,; is a highly successful bird of prey, adapting to various habitats from natural landscapes to bustling cities (Fig.1 ).This adaptability makes them one of the most hutnerous raptors globally (Ferguson- Lees & Christie, 2001). In the Old World, these kites are resourceful and opportunistic eaters, thriving on abundant food sources from human refuse and prey species like pigeons and rats in urban areas. They readily exploit human-generated waste, allowing them to maintain a healthy population and favourable conservation status (Galushin, 1971). In Indian cities like Delhi, they reign as the top avian predators within the urban ecosystem. Studies since the 1960s suggest their breeding density has remained stable. While most raptors require specific ecological conditions, Black Kites exhibit remarkable flexibility (Kumar et al., 2020a). They primarily nest in trees, indicating a need for green spaces within the city. However, a small portion (less than 5%) utilise man-made structures for nesting (Fig. 2). The ample availability of trees in Delhi provides suitable nesting grounds (Kumar, 2013; Kumar et al., 2019). The abundance of garbage in cities - often amassing in the form of large landfills - provides kites with a readily available food source. Additionally, the positive attitude of residents in South Asia towards these birds allows them to breed undisturbed near human settlements. This human tolerance translates to moderate breeding success, with around half of breeding Fig. 1. A typical congregation of Black Kites in Old Delhi responding to ritual tossing of meat by Muslims that follow Sufi traditions (Jama Masjid area). Photo Credit: Fabrizio Sergio 2 BlacK Kite Project - Phase - VI pairs raising chicks to fledging (Kumar et al.t 2014). The high density of Black Kites in southern Asian breeding grounds offers a unique opportunity for research. Scientists can compare these populations to European Black Kites, which have been extensively studied since the 1950s. Pioneering research in the 1990s on European populations focused on factors influencing chick survival, including hatching order, sibling competition, and food availability. These studies have become benchmarks for raptor biologists (Ferguson-Lees & Christie, 2001; Newton, 1979). A crucial finding from European studies is the link between food availability and brood reduction (where some chicks die in the nest). When food is scarce, chicks compete more intensely, and some may not survive (Vinuela, 1996). Black Kites in Delhi exhibit hatching asynchrony (chicks hatching at different times) and brood reduction, likely influenced by the varying food availability across the city's diverse urban landscapes. To capture these ecological nuances, researchers have been using trail cameras in nests across different urbanisation gradients to study relationships with urban variables. These data are further combined with observations to assess hatching patterns, chick survival, growth rates, and nesting behaviour. Delhi hosts two subspecies of black kites: the resident breeding Milvus migrans govinda (small Indian kite) and the migratory M. m. lineatus (black-eared kite) that arrives from Central Asia and Southern Siberia via the Central Asian Flyway across the Himalayas. GPS-tagging revealed that M. m. lineatus kites migrate 3300-4700 km from their breeding grounds in Russia, Kazakhstan, Xinjiang (China) and Mongolia to Delhi in 3-4 weeks, crossing the Himalayas at elevations up to 5000-6000 m (Kumar et al., 2020b).
