Technical Reports/Books/Manuals

Permanent URI for this communityhttp://192.168.202.180:4000/handle/123456789/7

Browse

Search Results

Now showing 1 - 10 of 26
  • Item
    Suggested measured to mitigate elephant and other wildlife train collisions on vulnerable railway stretches in India
    (MoEFCC and Wildlife Institute of India, Dehradun, 2025) PE-MoEFCC-WII
    The Indian railways serves as a vital transportation lifeline for the country, facilitating the movement of people and goods nationwide. However its extensive network has also contributed to major threats to Asian elephants and other wildlife in Certain regions. Additionally railway infrastructure can act as a barrier restricting wildlife movement and leading to habitat fragmentation. To address the issue of wildlife fatalities resulting from train collision, the MoEFCC with the WII and the Ministry of railways had initially identified 110 sensitive railway stretches across the elephant distribution range in India with 17 additional sensitive stretches identified in two Indian tiger range states.
  • Item
    Supplementation of Gaur in Bandhavgarh Tiger Reserve, Madhya Pradesh
    (Wildlife Institute of India, Dehradun, 2025) Nigam, Parag; Gorati, A.K.; Vishwakarma, R.; Bhandari, B.; Habib, Bilal; Mondol, Samrat; Nath, A.; Sen, S.; Krishnamoorthy, K.; Sahay, A.; Nanda, R.; Tiwari, V.R.
    Reintroduction and supplementation programs have been implemented worldwide to improve the conservation status of wildlife that have experienced a significant decline due to overexploitation, habitat destruction and fragmentation. Genetic drift and inbreeding are the two processes particularly relevant in reintroduction efforts that lead to reduced fitness, deceased survival rates and increased susceptibility to diseases. The MPFD in collaboration with WII has initiated a three year project (2024-2027) titled : Population management strategies for gaur (Bos gaurus gaurus) conservation: supplementation of gaur in Bandhavgarh tiger reserve, Madhya pradesh''. This project aims to ensure the long term viability of the species by enhancing its genetic diversity. To facilitate the smooth execution of field operations, an action plan was developed and released during the Inception cum planning workshop held at Bandhavgarh Tiger Reserve. Conservation translocation have become an important tool in recovering the threatened and locally extinct population. Species translocation are increasing all around the globe to reverse biodiversity loss and restore ecosystem functions. Reintroductions require careful planning as small population size experience inbreeding depression, which leads to decreased fitness and demographic stochasticity. Although genetic diversity is not directly linked to species extirpation, low gene pool results in low species recovery. To enhance the gene pool and long term viability of the restored species, supplementations are crucial, especially in small and isolated populations. The addition of new individuals amplify the gene flow in reintroduced species.
  • Item
    Demographic outcomes of diverse behavioural strategies assessed in resident and migratory population of black kites Milvus migrans Phase VI
    (Wildlife Institute of India, Dehradun, 2024) Kumar, Nishant; Jhala, Y.V.; Qureshi, Q.
    The Black Kite, an opportunist, facultative scavenger in the South Asian urban ecosystems,; is a highly successful bird of prey, adapting to various habitats from natural landscapes to bustling cities (Fig.1 ).This adaptability makes them one of the most hutnerous raptors globally (Ferguson- Lees & Christie, 2001). In the Old World, these kites are resourceful and opportunistic eaters, thriving on abundant food sources from human refuse and prey species like pigeons and rats in urban areas. They readily exploit human-generated waste, allowing them to maintain a healthy population and favourable conservation status (Galushin, 1971). In Indian cities like Delhi, they reign as the top avian predators within the urban ecosystem. Studies since the 1960s suggest their breeding density has remained stable. While most raptors require specific ecological conditions, Black Kites exhibit remarkable flexibility (Kumar et al., 2020a). They primarily nest in trees, indicating a need for green spaces within the city. However, a small portion (less than 5%) utilise man-made structures for nesting (Fig. 2). The ample availability of trees in Delhi provides suitable nesting grounds (Kumar, 2013; Kumar et al., 2019). The abundance of garbage in cities - often amassing in the form of large landfills - provides kites with a readily available food source. Additionally, the positive attitude of residents in South Asia towards these birds allows them to breed undisturbed near human settlements. This human tolerance translates to moderate breeding success, with around half of breeding Fig. 1. A typical congregation of Black Kites in Old Delhi responding to ritual tossing of meat by Muslims that follow Sufi traditions (Jama Masjid area). Photo Credit: Fabrizio Sergio 2 BlacK Kite Project - Phase - VI pairs raising chicks to fledging (Kumar et al.t 2014). The high density of Black Kites in southern Asian breeding grounds offers a unique opportunity for research. Scientists can compare these populations to European Black Kites, which have been extensively studied since the 1950s. Pioneering research in the 1990s on European populations focused on factors influencing chick survival, including hatching order, sibling competition, and food availability. These studies have become benchmarks for raptor biologists (Ferguson-Lees & Christie, 2001; Newton, 1979). A crucial finding from European studies is the link between food availability and brood reduction (where some chicks die in the nest). When food is scarce, chicks compete more intensely, and some may not survive (Vinuela, 1996). Black Kites in Delhi exhibit hatching asynchrony (chicks hatching at different times) and brood reduction, likely influenced by the varying food availability across the city's diverse urban landscapes. To capture these ecological nuances, researchers have been using trail cameras in nests across different urbanisation gradients to study relationships with urban variables. These data are further combined with observations to assess hatching patterns, chick survival, growth rates, and nesting behaviour. Delhi hosts two subspecies of black kites: the resident breeding Milvus migrans govinda (small Indian kite) and the migratory M. m. lineatus (black-eared kite) that arrives from Central Asia and Southern Siberia via the Central Asian Flyway across the Himalayas. GPS-tagging revealed that M. m. lineatus kites migrate 3300-4700 km from their breeding grounds in Russia, Kazakhstan, Xinjiang (China) and Mongolia to Delhi in 3-4 weeks, crossing the Himalayas at elevations up to 5000-6000 m (Kumar et al., 2020b).
  • Item
    Assessment of predator, prey and habitats in Kumbhalgarh Wildlife Sanctuary, 2024
    (Wildlife Institute of India, Dehradun, 2024) Sadhu, A.; Kanswal, S.; Roy, A.; Rana, A.; Tripathi, P.; Qureshi, Q.
    Kumbhalgarh Wildlife Sanctuary (KWLS) is located in the semi-arid western Indian landscape (24°33'54”N, 73°54'22"E] and spans the Pali, Rajsamand, and Udaipur districts of Rajasthan. Camera traps support various methodologies, including capture-mark-recapture for population estimation, occupancy surveys for determining species distribution, and distance sampling to assess animal density and abundance. Camera traps have been widely used as a wildlife monitoring tool due to their objectivity, ease of use, and ability to generate data on a wide range of species. Camera trapping was conducted in Kumbhalgarh from January to March 2024, covering an area of approximately 200 km2, which included all five ranges—Kumbhalgarh, Sadri, Desuri, Jhilwada, and Bokhada. The area was divided into 2 km2 grids, and in each grid, a pair of camera traps was placed. The cameras were set up along trails and near forest roads to maximize the probability of capturing the target species. These locations were selected based on a reconnaissance survey conducted in search of large carnivore signs along gipsy tracks, animal trails, and dry stream beds.
  • Item
    Ecological impacts of major invasive alien plants on native flora in Rajaji Tiger Reserve, Uttarakhand
    (Wildlife Institute of India, Dehradun, 2024) Kumar, Amit; Kumar, S.; Sahu, H.; Patra, R.; Page, N.; Qureshi, Q.
    This study focuses on Rajaji Tiger Reserve in Uttarakhand, within the Shivalik hills, to investigate the invasion patterns and ecological impacts of a major invasive plant species
  • Item
    Phylogeography and population genetics of leopards (Panthera pardus fusca) in India
    (Wildlife Institute of India, Dehradun, 2024) Bhatt, Supriya; Mondol, Samrat
    This study based on assessment of genetic variation, phylogeography and demographic history among Indian leopards. It also deals with the local population dynamics of leopards in the Rajaji tiger reserve where utilization of microsatellite markers was done. MtDNA and Microsatellite markers used for the study. Non-invasive genetic approaches to understand the various aspects of species biology focusing on phylogeography, demography, and local population dynamics in this study. The major objectives of this proposed thesis are: a) To assess the phylogeography of the Indian leopards using mtDNA and microsatellite markers b) To evaluate the population structure and demographic history of leopards in the Indian subcontinent using both mtDNA and microsatellite markers c) To investigate leopard social dynamics using genetic data at the local level and examine how it varies across different densities.