WII Technical Reports/Books/Manuals
Permanent URI for this collectionhttp://192.168.202.180:4000/handle/123456789/314
Browse
5 results
Search Results
Item Distribution and abundance of birds and mammals in the Southern Indian ocean, larsemann hills and princess astrid coast East Antarctica(Wildlife Institute of India, Dehradun, 2010) Jayapal, R.; Ramesh, K.The spatial distribution and abundance of sea birds, penguins and pack ice seals along the Southern Ocean, Ingrid Christensen and Princess Astrid Coast during 29th Indian Scientific Expedition to Antarctica was carried out between November 2009 and March 2010. A total of 34 species of birds with an encounter rate of 9.82/ nautical miles2 were recorded. High species turnover of sea birds was observed between 40° and 50° S longitude. Six aerial sorties were flown along the Ingrid Christensen and Princess Astrid Coast to count penguins and seals along the coast, totalling a length of approx. 1200 km. Adelie and Emperor penguins were recorded with encounter rate of 0.63 ± 0.20 (#/nm ±SE) and 3.81 ± 1.68 (#/nm ±SE) respectively at Ingrid Christensen casts. At Princess Astrid Coast more number of Adelie penguins (1.22 ± 0.12/nm ±SE) was recorded when compared to Emperor penguin (0.60 ± 0.2/nm ±SE). In the present survey, a total of 3601 hauled-out seals were counted from six aerial sorties totalling a length of approx. 1200 km, with each sortie lasting about two hours. Weddell seal Leptonychotes weddellii was the most commonly sighted species in both the areas surveyed (98.2%), and had an encounter rate of 2.9 seals/km. The other species encountered during the survey were crab-eater seal Lobodon carcinophagus (1.7%) and leopard seal Hydrurga leptonyx (0.03%). Group size of hauled-out weddell seals varied considerably and ranged from solitary to maximum of 42 individuals. The median group size of weddell seals hauled-out along the Ingrid Christenson coast was found to be significantly different between the December 2009 and January 2010 survey. Further, along this Coast weddell seals were found hauled-out mainly close to the ice shelf and their spatial distribution appeared to be influenced by the extent of sea ice in the area.Item Status of tiger and prey species in Panna Tiger Reserve, Madhya Pradesh: capture-recapture and distance sampling estimates(Wildlife Institute of India, Dehradun, 2013) Ramesh, K.; Johnson, J.A.; Sen, S.; Murthy, R.S.; Sarkar, M.S.; Malviya, M.; Bhardwaj, S.; Roamin, S.Item Evaluation of prey availability and habitat suitability for tigers and its ranging patterns in Sanjay Tiger Reserve, Madhya Pradesh(Wildlife Institute of India, Dehradun, 2017) Ramesh, K.; Sankar, K.; Kumar, Deleep; Nigam, Parag; Qureshi, Qamar; Raman, K.; Rajasekar, R.; Chaudhuri, Sankarshan; Sundaram, Snehaa; Hazra, PoushaliTiger conservation in human dominated landscape such as Sanjay Tiger Reserve (STR) has always been challenging for the managers and conservation planners. Anthropogenic factors have affected the area negatively, causing habitat degradation, depletion of prey base and unviable tiger population. STR is considered to be low density tiger population area and require recovery strategy, involving translocation from other areas, since natural colonization is not possible to boost the population to viable state. As a precursor to active population recovery, the project was conceived and implemented to establish baseline on prey availability and habitat suitability for tigers, which also involved understanding ranging patterns of tigers using radiotelemetry. Prey availability in terms of density of wild ungulate was estimated and was found to be low (8.2 ± 0.8 animals per km2), but there is an increasing population trend during the study period (2014- 2017), largely owing to active protection measures. Amongst the wild ungulates, density of chital was the highest (3.0±0.6/km2) followed by wild pig (2.0±0.6/km2), nilgai (1.8±0.3/km2), chinkara (1.1±0.3/km2) and four horned antelope (1.0±0.4/km2). Livestock (11.6±5.5/km2) was the most abundant animal using the reserve throughout, also contributing to prey base to some extent. Home range of one radio-collared adult male tiger was estimated to be 208.6km2 during May 2015 to July 2015 and the animal got killed to a territorial fight with another male tiger. Similarly, home range of radio-collared (captive-raised) tigress was estimated to be 154.1 km2 during October 2016 - May 2017. Exploring large areas could be attributed to limitation of mate choice and a depleted prey base. Habitat suitability of tiger was assessed based on habitat covariates and it was found that 44% of the total area of tiger reserve is potentially suitable habitat in the current status of prey availability, but the suitability can increase to 61% if prey base can be restored in other areas of the reserve. Carrying capacity of tiger was determined for STR based on the current prey density. It was found that STR can support 11 tigers in this present situation. Population Viability Analysis (PVA) with the carrying capacity of 11 tigers and current population (four individuals, one adult male, two adult females and one juvenile) of tiger in STR showed a poor survival probability (0.12 ±0.03) over a time span of 25 years. However, given the availability of habitat space and potential to increase prey base, doubling of carrying capacity from 11 to 22 tigers is possible with a supplementation of two tigers in every three years until year ten and it will ensure very high survival probability (0.87±0.03). Active recovery strategy should target the futuristic carrying capacity and management actions would have to be geared towards this. In this context, active population recovery and long-term monitoring strategy has been proposed towards successful population recovery and establishment of viable tiger population, along with other habitat covariates.Item Human wildlife conflict: Assessment of Socio-psychological perspectives and actual threat from Leopard in Motichur range, Rajaji Tiger Reserve(Wildlife Institute of India, Dehradun, 2019) Yadav. S.; Mohan, M.; Sandilaya, D.; Boro, P.; Sharma, A.; Sanatan, S.; Ramesh, K.As the proverbs go, “the deeper the roots, the greater the fruits” & “the devil is in the details”, for conservation management to be successful, one must look at multiple aspects and require comprehensive approach. Human-wildlife conflict is not a singular issue of management since it has wider implications and more so, in cases where species restoration in the form of conservation is involved, because social acceptance and better preparations are keys for success of such programs. In this report, information gathered from three different but linked studies carried out under the larger and long-term framework are synthesized, providing an overview of (1) socio-economic conditions and Quality of Life of people, (2) temporal landscape change and people perception on the conflict and (3) comparative status of leopard behavior in the conflict versus non-conflict zones. By studying “Quality of Life”, one can assess the impact of forest resources on the living conditions of people and vice versa. Chapter 1 shows the results of “QOL” study conducted within the villages falling under the 1 km buffer in the Eco-sensitive zone villages of Rajaji Tiger Reserve, Uttarakhand from January 2019 to June 2019. This study evaluates the socio-economic dimension of people and focused on demographic status, human dependency on utilization of forest resources and the role of people in management actions. The utilization of forest resources was found to be high in the three districts and there is hardly any participation of the people in the management inputs. The qualitative wellbeing assessment revealed that people are less satisfied with their living condition. The global environment change is increasingly forcing the already dwindled wildlife areas to be even more susceptible to disturbances. Localisation, shifting or disappearance of resources can severely impact wildlife and can even lead to local extinctions. There are many evidences to support this narrative. A study analysing the “changes in landscape” from 1995 to 2018 was also undertaken, which showed an increase in barrenness. Because “Human-Wildlife Conflict” explicitly revolves around the costs of sharing land with dangerous wild animals, it is important to understand the patterns of landscape change. While highlighting the landscape changes over a 20 years period, the second study also focused on the damages done by wild animals, the compensatory schemes, and most importantly the perception of people about wild animals. Though one can never truly eradicate human-wildlife conflict completely, any conflict is a situation of paramount importance to be solved, because any conservation effort does require the support of public at large, particularly the local people who share the space with wildlife. Any spike or change in trend of conflict requires further investigation not for the sole reason saving human fatalities but also for building better human relationships between wildlife managers and public. Since 2014, Motichur range of Rajaji Tiger Reserve has experienced 31 attacks on humans by the resident leopard (Panthera pardus) population. It resulted in 19 human deaths and grievous injuries to 12 people. The epicenter of the conflict is the space surrounding national highway 58, connecting the cities of Rishikesh and Haridwar. Rajaji forest department has been deploying camera traps in the conflict space to reckon the leopard movement patterns and to circle out any suspect animals responsible for the conflict. We intensified the camera trap study focusing on entire Motichur range (excluding the conflict locations) from November 2018 to February 2019. In addition, we visited each conflict site with the forest department officials, and collected information on various attributes related to the site. We found an extremely high leopard count for the winters i.e. 47, with a very high density of 45 animals per 100 square kilometers. We listed down the most suspected leopards involved in conflict based on 3-point criteria. The results of our work will increase our understanding of the adaptability of leopards. The results also reiterate the imperative to shift from a PA centric to a landscape level conservation approach, analyzing the source and drivers of conflicts, including the carrying capacity analysis. There is also an urgent need to include engage communities more closely and develop a short-term and long-term conservation programs.Item E-Bird technology for tiger conservation: development and integration of unmanned Aerial vehicles as Surveillance and Monitoring tool for protection of tigers and capacity building of the Frontline staff(Wildlife Institute of India, Dehradun, 2019) Ramesh, K.; Singh, B.; swan, S.; Krishnakumar, T.; Mondal, T.; Ghosh, R.; Mathur, V.; Verma, N.; Williams, A.C.; Yadav, S.P.; Nayak, A.K.; Mathur, V.B.Un-manned Aerial Vehicles also known as Remotely Piloted Aerial Vehicles (RPAV), have the potential to solve many problems related to wildlife research and conservation. UAVs are small and medium-sized aircraft, which are equipped with advanced electro-optics (EO) such as thermal, night-vision and various other sensors for remote-sensing and surveillance activities. Objectives: The project was conceived as a new initiative, collaboratively by Wildlife Institute of India and National Tiger Conservation Authority in order to (1) integrate Un-manned Aerial Vehicle (UAV or Drone) for surveillance in selected tiger reserves based on pilot testing experience in the reserve, (2) undertake need and feasibility analyses for integration of Drone technology in tiger reserves, (3) map locations of poaching and conflict-prone areas, which would serve as a basis for drone implementation, (4) experiment and implement specialized drone units in a phased manner, and (5) build capacity of frontline staff for integration of drone technology as a part of regular management efforts.
