Technical Reports
Permanent URI for this communityhttp://192.168.202.180:4000/handle/123456789/7
Browse
11 results
Search Results
Item A report on population and density estimation of leopards in Girnar Wildlife Sanctuary, Gujarat(Wildlife Institute of India, Dehradun, 2012) Jhala, Y.V.; Basu, ArnabItem Status of the Tigers, co-predators, and prey in India 2010(Wildlife Institute of India, Dehradun, 2010) Jhala, Y.V.; Qureshi, Qamar; Gopal, Rajesh; Sinha, P.R.This report synthesizes the results of the second countrywide assessment of the status of tigers, co-predators and their prey in India. The first assessment was done in 2006 and its results subsequently helped shape the current policy and management of tiger landscapes in India. The current report is based on data collected in 2009-2010 across all forested habitats of 17 tiger States of India with an unprecedented effort of about 477,000 man days by forest staff, and 37,000 man days by professional biologists. The results provide spatial occupancy, population limits, and abundance of tigers, habitat condition and connectivity (Fig E1). This information is crucial for incorporating conservation objectives into land use planning across landscapes so as to ensure the long term survival of free ranging tigers which serve as an umbrella species for the conservation of forest biodiversity. The study reports a countrywide increase of 20% in tiger numbers but a decline of 12.6% in tiger occupancy from connecting habitats. The methodology consisted of a double sampling approach wherein the State Forest Departments estimated occupancy and relative abundance of tigers, co-predators, and prey through sign and encounter rates in all forested areas (Phase I). Habitat characteristics were quantified using remotely sensed spatial and attribute data in a geographic information system (Phase II). A team of trained wildlife biologists then sampled a subset of these areas with approaches like mark-recapture and distance sampling to estimate absolute densities of tigers and their prey (Phase III), using the best modern technological tools (remote camera traps, GPS, laser range finders). A total effort of 81,409 trap nights yielded photo-captures of 635 unique tigers from a total camera trapped area of 11,192 km2 over 29 sites. The indices and covariate information (tiger signs, prey abundance indices, habitat characteristics) generated by Phase I & II were then calibrated against absolute densities using Generalized Linear Models (GLM) and the relationships were used for extrapolating tiger densities within landscapes. Tiger numbers were obtained for contiguous patches of occupied forests by using average densities for that population block. Numbers and densities were reported as adult tigers with a standard error range. Habitat suitability for tigers was used to model least cost pathways joining tiger populations in a GIS and alternative routes in Circuit scape. These were aligned on high-resolution satellite imagery to delineate potential habitat corridorsItem Field guide: Monitoring tigers, co-predators, prey and their habitats(Wildlife Institute of India, Dehradun, 2013) Jhala, Y.V.; Qureshi, Qamar; Gopal, Rajesh; Amin, R.Item Ecology of leopard (Panthera pardus) in Sariska Tiger Reserve, Rajasthan : Executive summary(Wildlife Institute of India, Dehradun, 2013) Sankar, K.; Qureshi, Q.; Jhala, Y.V.; Mondal, K.; Gupta, S.; Chourasia, P.Item Tigers of the Transboundary Terai Arc Landscape: Status, distribution and movement in the Terai of India and Nepal(Wildlife Institute of India, Dehradun, 2014) Chanchani, P.; Lamichhane, B.R.; Malla, S.; Maurya, K.; bista, A.; Warrier, R.; Nair, S.; Almeida, M.; Ravi, R.; Sharma, R.; Dhakal, M.; Yadav, S.P.; Thapa, M.; Jnawali, S.R.; Pradhan, N.M.B.; Thapa, G.J.; Yadav, H.; Jhala, Y.V.; Qureshi, QamarWhile the conservation of tigers is emphasized in protected areas throughout their range countries, the species continues to be distributed in forests of varying protection status, and in habitats that span international borders. Although India and Nepal share a long border in the Terai belt, this area that was once forested is now largely agricultural, and wildlife is restricted to remnant forest patches. This study details the status of tiger and ungulate prey species populations in around 5300 km2 transboundary Terai Arc Landscape (TAL), documents the movement of tigers between forests in India and Nepal based on camera trap data and makes specific recommendations for the conservation of tigers and their prey in Transboundary TAL. Notable protected area within the study area includes Chitwan and Bardia National Parks in Nepal and Dudhwa and Valmiki Tiger reserves in India. This study was carried out in 7 protected areas and reserve forests in India, and 5 protected areas, three biological corridors (protected forests) and adjoining forest patches in Nepal. Occupancy surveys for animal signs involved 4496 kilometres of foot surveys in Nepal and India. Between November 2012 and June 2013, these sites were sampled with a total of 1860 camera trap stations, with a total sampling effort of 36,266 trap nights. Nearly 9000 km2 of tiger habitat was sampled with camera traps. 3370 kilometres of line transects (n=239) were sampled in the landscape. Cumulatively, this sampling exercise is the largest survey effort of its kind in the Terai Arc Landscape to date, and involved partnerships between National and State government agencies, research institutions, non-governmental organizations and members of local communities who participated in the research. Data analysis was carried out using contemporary analytical methods including site occupancy models, spatial explicit capture recapture models and distance sampling framework. Site occupancy was estimated to be 0.55 (0.44-0.66) in Nepal and 0.77 (0.67-0.85) in the region between Nandhaur WLS and Suhelwa WLS in India. A total of 239 individual adult tigers were identifi ed from camera trap photos, of which 89 were adult males and 145 were adult females. 5 animals could not be ascribed a gender from camera trap data. Site-specific minimum tiger numbers varied from 3 in Banke National Park in Nepal to 78 in Chitwan National Park, also in Nepal. Tiger numbers and/or abundances in other sites within the Transboundary landscape were estimated to lie within this range, with notably large populations in Bardia National Park and Pilibhit Tiger Reserve, and smaller populations in Dudhwa National Park, and Kishanpur Wildlife Sanctuary and Shuklaphanta Wildlife Reserve. Tiger densities in the Transboundary Terai Arc Landscape range between 0.16/100 km2 in Banke National Park, Nepal to 4.9/ 100 km2 in Kishanpur Wildlife Sanctuary, India. Spatial heterogeneity in tiger densities has been mapped for the entire study area. Densities of principal ungulate prey species of tigers were found to vary widely across sites, and while density estimates in some protected areas in Nepal were as high as 92.6/km2 (Bardia National park), they were seven fold lower in other sites in India and Nepal (13.6 in Dudhwa National Park and 10.7 in Banke National Park). While habitat connectivity has severely been compromised in this landscape, tigers exist as one wholly-connected population in the protected areas of Chitwan National Park, Nepal and Valmiki Tiger Reserve, India as well as in Shuklaphanta Wildlife Reserve, Nepal and the Lagga-Bagga Block of Pilibhit Tiger Reserve, India. Other than these sites we photo-documented movement of tigers between Nepal and India along the Khata corridor (between Bardia National Park and Katerniaghat Wildlife Sanctuary) and Shuklaphanta - Tatarjanj - Pilibhit Corridor. We failed to document tiger movement in four other corridors: Boom-Brahmadev, Laljhadi, Basanta, and Kamdi. Forest connectivity has severely been compromised in these corridors by land use change. There are notably large differences in tiger and prey densities within and between sites. This study points to the infl uence of habitat (forest-grassland mosaics and riparian areas) on the distribution and density of tigers and their prey. However, these factors alone are likely to provide incomplete explanations for observed patterns. Observed patterns of tiger and prey densities are likely to also be on account of anthropogenic pressures on wildlife and their habitats in the form of poaching, livestock grazing and the entry of large numbers of wood and grass collectors deep into wildlife habitats. Another significant threat to the survival of tigers and other mammals arises from the proposed development of new roads in Nepal and India that may severely degrade the region’s fragile corridors. The establishment of new settlements near existing tiger habitats constitutes encroachment, and poses a significant challenge for conservation in some parts of this landscape. The continued use of two forest corridors between Nepal and India by tigers and other large mammals is encouraging. The dispersal of tigers between sites plays an important role in maintaining demographically stable and genetically robust populations. The most pressing task for conservation is to protect these corridors and to re-establish connectivity between other sites by restoring corridors that have been eroded by development and land-use change. There are also significant opportunities to build conservation and development programs that emphasize the protection of the Terai’s remnant wilderness areas, while also attending to legitimate needs of forest-dependent human communities. This report also identifies key interventions that are needed to secure the future of tigers in the Terai. These include policy initiatives, important interventions to create functional biological corridors, key enforcement and protection measures, prescriptions for community involvement in conservation and identifying important themes for future research and monitoring. To set tangible management and conservation targets, recommended actions under these themes have been listed separately for twenty four sites in the transboundary TAL. The future of tigers and other large mammals in Nepal and India are intertwined, as is the wellbeing of the peoples of the Terai who live along this forested frontier. Building effective partnerships for conservation between the governments, conservation organizations and civil society of India and Nepal, and working toward common goals are imperative to maintain and promote populations of tigers and other endangered wildlife in this unique eco-region.Item The status o ftigers, copredators and prey in India 2014(Wildlife Institute of India, Dehradun and National Tiger Conservation Authority, 2014) Jhala, Y.V.; Qureshi, Qamar; Gopal, R.The tiger is an icon for conservation across forested systems of Asia. The Government of India has used the charismatic nature of the tiger to promote on conservation of biodiversity, ecosystem functions, goods and services by launching Project Tiger in 1972 and subsequently using legislation to gazette tiger reserves and by allocating appropriate resources for their conservation. Since 2006 the status of tigers in India is being assessed every four years across all potential habitats in 18 Indian states within the distribution range of the tiger. This document reports the results of the third country wide assessment conducted in 2013-14. undisturbed forests with good prey populations. Tiger population (excluding < 1 year cubs) was estimated to be 2226 (SE range 1945 to 2491) in India (Table 2.1). Amongst tiger reserves Corbett had the largest tiger population estimated at 215 (range 169-261) tigers, four tiger reserves (including Bandipur, Nagarhole and Kaziranga) had over 100 tigers. Tiger Reserves accounted for over 70% of all the tigers in India (Table 2.2). Leopard population in India was estimated to be 7910 (SE range 6566 to 9181) (Table 2.3). The state of Madhya Pradesh had the highest number of leopards at 1817 followed by Karnataka at 1129 leopards. The leopard population was estimated only within forested habitats in tiger occupied states, therefore, it should be considered as a minimum number since leopards, unlike tigers, are also found outside forests. This is the first attempt to estimate leopard abundance at landscape scales. Distribution range and spatial extent of all major mammalian species are provided in the report. Tiger occupancy and abundance has substantially increased in the Shivalik Hills and Gangetic Plains landscape, primarily due to improved status of tigers in the state of Uttrakhand. Rajaji-Corbett tiger population is now contiguous with Dudhwa-Pilibhit population since the intervening forests of Haldwani and Terai Divisions along with new protected areas like Nandhor Wildlife Sanctuary have tiger occupancy and reasonable tiger density. The landscape would benefit from supplementation of tigers in Western Rajaji that will assist in the occupancy of Shivalik forests in Uttar Pradesh and Kalesar Wildlife Sanctuary in Haryana. Maintaining and enhancing trans-boundary corridor connectivity between India and Nepal is an essential element of tiger, elephant and rhino conservation in this landscape. This connectivity is threatened by the new India-Nepal border road and special care is needed to ensure that proper mitigation measures are in place. Tiger status has improved within the Central Indian landscape with an increase in tiger occupancy and numbers. This increase is contributed primarily by the states of Maharashtra and Madhya Pradesh. Indravati Tiger Reserve in Chhattisgarh was assessed for the first time. Sampling was limited to accessible areas of Palamau Tiger Reserve in Jharkhand. Conservation efforts need to focus on tiger populations in Orissa (Simlipal-Satkosia tiger reserves), Palamau landscape and in Northern Andhra Pradesh (Kawal Tiger Reserve). Sanjay-Guru Gasidas-Palamau landscape holds promise for future expansion of tiger population provided planned conservation investment continues. Tiger populations in Central Indian landscape are highly fragmented and some are quite small in numbers, therefore, their survival is dependent on corridor connectivity. Corridors in this landscape are threatened by developmental activities like mining and infrastructure. Appropriate safeguards and mitigation measures need to be implemented for development projects in this region so as to ensure that corridor connectivity between tiger populations is not compromised. Madhya Pradesh has also taken initiative to provide resources for corridor restoration by implementing corridor specific management plans. Western Ghat Landscape has maintained its tiger status across all the three states of Karnataka, Kerala and Tamil Nadu. The world's largest tiger population (Nagarhole-Bandipur-Mudumalai-Wayanad- 2 Satyamangalam-BRT) has further increased to about 585 tigers covering 10,925 km . New Protected Areas declared by Karnataka on the boarder of Goa has assisted in tiger dispersal into Goa and their movement further north into Radhanagri and Sahayadri Tiger Reserve. This region needs more conservation focus as it viii STATUS OF TIGERS IN INDIA, 2014 holds great potential for tiger and biodiversity conservation. It would be timely to consider declaring inter-state tiger reserve between Karnataka, Goa and Maharashtra. There is loss in tiger occupancy in the intervening habitat between Kudremukh-Bhadra and Anshi-Dandeli, threatening to disrupt connectivity between these tiger populations. Populations south of the Palghat gap (Parambikulum-Anamalai, Periyar, and Kalakad Munduntherai) have improved; attention is needed to conserve forest connectivity between these three major populations.Only select areas were sampled in the North Eastern Hills and Brahmaputra Flood Plains landscape, therefore, tiger occupancy and numbers from this region are minimal estimates. The tiger population in Kaziranga-Karbi Anglong-Paake-Nameri-Orang is the largest source in this landscape (about 163 tigers) and should be managed as a single metapopulation with strategies to address movement corridors between these populations. Dibang and Namdapha were assessed through Scat DNA and opportunistic camera traps and show good promise for tiger and biodiversity conservation but need more conservation investment. Manas-Buxa along with areas of Bhutan landscape have potential for sustaining higher number of tigers and are currently below their carrying capacity. Enhanced protection in this region will help build prey and subsequently tiger population in the long-term. However, the management focus for these Protected Areas should be for forest biodiversity and not become tiger centric, since tiger density in many of these close canopy forests would be inherently low. The entire Sundarban tiger reserve and parts of the Twenty Four Parganas were camera trapped in 2013-14. Tiger population of about 76 (62 to 92 tigers) has remained stable since 2010 and is likely to be near its carrying capacity. Sundarban tiger population is contiguous with that of Bangladesh and transboundary management including anti-poaching strategy and management of ship traffic in specific water channels needs to be implemented for long-term conservation of this unique tiger. Genetic analysis based on a panel of 11 micro-satellites of 158 tiger individuals from across India has shown that at the country scale the tiger population of the North-East is genetically different. The most unique genetic unit of tigers are from Odisha and these need high conservation priority as their population is on a declining trend. The western-arid zone tigers of Ranthambore-Sariska showed a different genetic composition from those of terai and central Indian tigers with some genetic contribution from both these regions. At the local scale the tiger populations south of the Palghat gap differed from the Northern Western Ghat population. The tigers from Sahyadri (northern Western Ghats) shared their genetic makeup with tigers from central India. This preliminary country scale genetic analysis shall assist in planning reintroduction and supplementation strategies for tigers in the future and to prioritize conservation investments to target unique gene pools. Reduction in tiger and prey poaching and in centivised-voluntary relocation of human settlements from core areas of tiger reserves have been the primary drivers for the improved tiger status in India. These schemes and activities need continuous resource allocation for ecosystem maintenance and restoration. The implementation of MSTrIPES, landscape scale tiger management plans inclusive of buffer and corridors, and use of green infrastructure for mitigating impacts of development especially on corridors, need to become the norm across India. Tigers are conservation dependent species, political will driven by public opinion to ensure proper resource allocation is essential for their continued survival.Item Ecology of Asiatic lions in Saurashtra, Gujarat - Final Project report (2011-2016)(Wildlife Institute of India, Dehradun, 2016) Jhala, Y.V.; Banerjee, K.; Basu, P.; Chakrabarti, S.; Gayen, S.; Gogoi, K.; Basu, A.Asiatic lion (Panthera leo persica) is a conservation icon and elucidates a success story of conservation in modern India. With single isolated population and a small founder base, it typifies all the challenges of global carnivore conservation. Lions ranged from Persia to Palamau in eastern India till early 18th century, but were almost driven to extinction by indiscriminate hunting and habitat loss by late 1880‟s. A single relict population of less than 50 lions persisted in the Gir forests of Gujarat by 1890's. With stringent protection offered by the Nawabs of Junagadh and subsequently by the State run Gujarat Forest department, Gir lions have increased to a current population of over 500 accompanied by a subsequent range expansion. Lions were restricted to the Gir forests (1,800 km2) till the early 1980's, but have since dispersed to occupy over 20,000 km2 of human dominated agro-pastoral landscape of Saurashtra. Currently lions occupy the Gir Protected Area (PA), 180 km2 Girnar forests and over 15,000 km2 of coastal scrublands and agro-pastoral landscapes of Junagadh, Amreli, Gir Somnath and Bhavnagar districts. An in-depth understanding is required on how lions live within and outside the Protected Area. The magnitude and dimensions of conflict with human interests, and gene flow between different widely spaced breeding units in light of current and future development within the Greater Gir landscape. The current study investigates lion ecology with emphasis on space use, resource selection and aspects of human-lion conflicts to assist formulating a viable future lion conservation strategy for the landscape. On submission of first phase‟s findings to the Gujarat Forest Department (GFD) and WII-TRAC through technical reports, an extension for the second phase of this project was procured in 2011 with the aim of assisting the managers to formulate landscape level lion conservation policies based on informed research and robust scientific approaches. During the tenure of this project, WII was mandated by the CWLW, Gujarat state to take up three additional research components – 1) assessment of potential habitat corridor landscape between Gir and Girnar and 2) estimation of leopard (Panthera pardus) abundance in Girnar and 3) ecological and social potential of Barda for reintroduction of Asiatic lions. All these components were successfully addressed and findings were communicated to the GFD as individual reports as well as summarized herein.Item Spatial analysis of livestock predation by lions in the Greater Gir landscape(Wildlife Institute of India, Dehradun, 2018) Jhala, Y.V.; Singh, A.P.; Gogoi, Keshab; Chakrabarti, S.; Singh, P.; Nala, R.R.; Kumar, S.; Karuppasamy, T.; Sakkira, B.; Ram, M.; GandhiData on livestock kill by carnivores (lion and leopard) were collected from the districts of Junagadh, Amreli, Gir Somnath and Bhavnagar, accounting for 914 villages between 2012-13 to 2016-17. These data were further translated into English, digitized and spatially mapped in GIS. We obtained remotely sensed as well as spatial covariate layers of forest cover, lion refuge patches, drainages and nigh-light intensity. We conducted a fixed Kernel analysis of spatially explicit livestock predation events at the village resolution to obtain a consolidate “predation risk map” of the landscape on a relative scale and used it for subsequent analysis. The tehsils of Jafrabad, Gir gadhada, Amreli, Dhari, Khambha and Rajula recorded highest livestock predation by lions. A temporal increasing trend was observed for number of lion-predation events as well as in the spatial extent of predations. More importantly the intensity (number of livestock kills/village/year) of livestock predation showed an increasing trend (R2= 0.73, P= 0.06, slope = 15 % (SE 0.05)), this suggests not only an increase in the spatial extent of the conflict but also a substantial increase in the magnitude of conflict within the same spatial extent. A logistic regression, given by: Ln Odds Ratio (occurrence of lion predation) = -0.16 + 0.76 * distance to forest + 0.54* distance to lion habitat; (Wald’s p < 0.05). The increasing trend in the extant and intensity of livestock predation by lion was indicative of an increasing lion population but of concern in maintaining the tolerance of local communities towards lions co-existing with them. A significant deficit between the market rate and compensated amount for lion predation (R² = 0.74, p=0.06) was observed with an increasing trend. As a management strategy we recommend a revision of compensation rates to match the market price and an efficient system to pay compensation promptly. Improved husbandry practices and, as well as managing lion density below social carrying capacity is recommended. This would help maintaining tolerance towards lion under an increasingly conflict scenario.Item A rapid field survey of tigers and prey in Dibang Valley district, Arunachal Pradesh(Wildlife Institute of India, Dehradun, 2014) Gopi, G.V.; Qureshi, Qamar; Jhala, Y.V.The Dibang valley district is the largest district of Arunachal Pradesh with an area of 9129 sq km and is also the least populated district of the country with approximately 1 person/sq km. The district shares international borders in the north, North West and Eastern sides with Tibet (China), the South Western region is bound by Upper Siang district and the Southern Side is bound by lower Dibang Valley district. This district was chosen to survey for tigers and their prey due to the recent rescue of tiger cubs from the district in Angrim valley during december 2012. Our survey confirms the occurrence of tigers in the district. We camera trapped the first ever image of an adult tiger from the Dibang valley Wildlife Sanctuary. We also observed 10 pubmarks and collected 11 scats in and around the WLS. All the 24 people whom we informally interviewed confirmed the presence of tigers in the WLS and reported either having had a direct sighting, observed indirect evidences or heard about livestock depredation incidents by the tigers. Preliminary assessment of prey suggest that the WLS holds a good diversity and abundance of prey like Takin Budorcis taxicolor taxicolor, wild pig Sus crofa, Goral Naemorhaedus goral, Musk deer Moschus fuscus, Barking deer Muntiacus muntjak, Himalayan Serow Capricornis thar and Mithun Bos frontalis which can sustain a good population of tigers in the DWLS. The DWLS has the potential of becoming a tiger reserve in future as it may harbour a very important source population of tigers in this region, However the next immediate priority must be to ensure that this vital tiger population is protected and continuously monitored. This can be achieved by a collaborative effort between NTCA, WII, GoAP and most importantly the local people by conducting long term research to establish robust ecological and genetic baselines that can aid in long term conservation and monitoring of tigers, co-predators, prey and their habitats in this unique landscape that in part of a global biodiversity hotspot.Item Status of tigers, co-predators and prey in India 2018 : Summary report(Wildlife Institute of India, Dehradun, 2019) Jhala, Y.V.; Qureshi, Q.; Nayak, A.K.